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The strength and pattern of natural 
selection on gene expression in rice

Simon C. Groen1, Irina Ćalić2, Zoé Joly-Lopez1, Adrian E. Platts1, Jae Young Choi1,  
Mignon Natividad3, Katherine Dorph1, William M. Mauck III4, Bernadette Bracken1,4,  
Carlo Leo U. Cabral3, Arvind Kumar3, Rolando O. Torres3, Rahul Satija1,4, Georgina Vergara3, 
Amelia Henry3, Steven J. Franks2 & Michael D. Purugganan1,5 ✉

Levels of gene expression underpin organismal phenotypes1,2, but the nature of 
selection that acts on gene expression and its role in adaptive evolution remain 
unknown1,2. Here we assayed gene expression in rice (Oryza sativa)3, and used 
phenotypic selection analysis to estimate the type and strength of selection on the 
levels of more than 15,000 transcripts4,5. Variation in most transcripts appears (nearly) 
neutral or under very weak stabilizing selection in wet paddy conditions (with median 
standardized selection differentials near zero), but selection is stronger under 
drought conditions. Overall, more transcripts are conditionally neutral (2.83%) than 
are antagonistically pleiotropic6 (0.04%), and transcripts that display lower levels of 
expression and stochastic noise7–9 and higher levels of plasticity9 are under stronger 
selection. Selection strength was further weakly negatively associated with levels of 
cis-regulation and network connectivity9. Our multivariate analysis suggests that 
selection acts on the expression of photosynthesis genes4,5, but that the efficacy of 
selection is genetically constrained under drought conditions10. Drought selected for 
earlier flowering11,12 and a higher expression of OsMADS18 (Os07g0605200), which 
encodes a MADS-box transcription factor and is a known regulator of early 
flowering13—marking this gene as a drought-escape gene11,12. The ability to estimate 
selection strengths provides insights into how selection can shape molecular traits at 
the core of gene action.

To investigate the strength and pattern of selection on gene expression, 
we assessed transcriptome variation in two rice populations (Sup-
plementary Tables 1–4)—one consisting of 136 varietal group ‘Indica’ 
accessions (comprising the indica and circum-aus subgroups) and 
the other of 84 varietal group ‘Japonica’ accessions (comprising the 
japonica and circum-basmati subgroups)—in a field experiment in the 
Philippines3. Replicates of each population, with three individuals per 
accession, were planted in a continuously wet paddy and a field that 
imposed intermittent drought (Fig. 1a, Extended Data Figs. 1–3). We 
used 3′-end mRNA sequencing14 (Methods) to measure mRNA levels 
in leaf blades of the 1,320 plants at 50 days after sowing, correspond-
ing to 17 days after withholding water in the dry field. We observed 
genetic variation in the levels of 15,635 widely expressed transcripts15 
(a broad-sense heritability of about 0.08 to about 0.95, false discovery 
rate (FDR)-adjusted q < 0.001) (Fig. 1b, Extended Data Figs. 2, 3, Sup-
plementary Text, Supplementary Tables 5–8 provide overviews of 
genetic, environmental and interactive effects).

We focused our analyses on the Indica population, which is the pre-
dominant rice population grown globally3. We applied phenotypic 
selection analysis to measure the strength and pattern of selection 
on the levels of all 15,635 transcripts4,5, using several complementary 

approaches. We initially measured total (direct and indirect) selection, 
and calculated univariate linear (S) and quadratic (C) selection differen-
tials; these differentials estimate directional and stabilizing or disruptive 
selection, respectively, on the basis of the relationship between the trait 
value (transcript abundance) and fitness4,5. We considered total lifetime 
fitness through two multiplicative fitness components16: (i) flowering 
success, defined as flowering and producing filled grains before the 
end of the season6,11,12 (which was only relevant under drought, owing to 
stress-related flowering delay and spikelet sterility)11,12; and (ii) fecundity, 
which was quantified as the numbers of filled grains produced (and 
which was relevant for both fields)6,11,12 (Fig. 1a, Extended Data Fig. 1, 
Supplementary Tables 2, 9, Supplementary Notes 1, 2).

In wet conditions, selection on expression appeared to be weak. 
Transcriptome-wide selection strength was |S|median = 0.035, with very 
few transcripts showing |S| > 0.1, which suggests that—for most genes— 
variation in expression is (nearly) neutral (Fig. 1c); this is similar to the 
distribution of selection strengths for higher-level organismal traits4,17. 
Directional selection (S) showed an overall bias for stronger and more-
prevalent positive selection (a greater fitness with greater expression) 
than for negative selection (a lower fitness with greater expression) (7,973 
versus 7,569 transcripts, with Smedian = 0.0361 (for positive selection) and 
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Smedian = −0.0345 (for negative selection), respectively; Mann–Whitney 
U-test, z = 2.38, P = 0.0173). By contrast, C was negative (consistent with 
stabilizing selection) for the majority of transcripts (8,070 transcripts 
with C < 0 and 7,472 transcripts with C > 0)—although when C was posi-
tive, it tended to be stronger (Mann–Whitney U-test, z = −3.28, P = 0.001) 
(Fig. 1d, e, Supplementary Tables 10, 11). However, none of the transcript 
levels covaried significantly with fitness, for either S or C, after Bonfer-
roni correction (P < 3.2 × 10−6). This suggests that—at microevolutionary 
timescales—variation in gene expression is (nearly) neutral or exhibits 
very weak stabilizing selection. This contrasts with stronger directional 
and stabilizing selection at larger evolutionary timescales18.

Selection was stronger (|S|median = 0.1367) under drought conditions 
than under wet conditions (Mann–Whitney U-test, z = 99.99, P < 0.0001) 
(Fig. 1c). Although no individual transcript breached the Bonferroni 
threshold, S and C exhibit more extreme values under drought condi-
tions, indicating drought-induced shifts in both the strength and pattern 
of selection (Kolmogorov–Smirnov test, D = 0.327 (for S) and D = 0.269 
(for C), P < 0.0001) (Fig. 1d, e, Extended Data Fig. 4, Supplementary 
Text show results for fitness components under drought conditions). 
We examined selection on expression across environments and found 
patterns of antagonistic pleiotropy (S exhibits opposite directionality 
between environments) for 6 transcripts (about 0.04%) and conditional 

neutrality (significant S in one environment) for 443 transcripts (2.83%) 
(Fig. 1f). Compared to expectations that are based on chance alone, 
conditional neutrality appears much more common than antagonis-
tic pleiotropy under our conditions6 (Supplementary Table 12). This 
result indicates a general lack of trade-offs at the gene-expression level, 
and suggests a mechanistic explanation for the lack of yield penalty on 
drought tolerance in modern rice breeding lines12.

To identify factors that shape rates of microevolutionary change in 
gene expression, we performed partial correlation analysis with factors 
that influence macroevolutionary rates of expression divergence7,8,19–21 
(Supplementary Table 13). We focused on |S| because this value is directly 
proportional to the response to selection5, which is a measure of micro-
evolution22. Relative expression level and stochastic expression noise were 
negatively correlated with |S| (Pearson’s partial r < −0.119, P < 5.13 × 10−48) 
(Fig. 2a, b, Supplementary Table 14), suggesting fitness is buffered—to 
some extent—for expression variation in highly expressed genes, as well 
as for high stochasticity in transcript abundance9. However, we observed 
that accessions with higher genome-wide levels of expression stochas-
ticity tend to have a lower fecundity23,24 (Spearman’s ρ < −0.174, P < 0.05) 
(Fig. 2c, Extended Data Fig. 5, Supplementary Table 15). |S| also correlated 
positively with tissue specificity τ (Pearson’s partial r > 0.024, P < 0.01) 
(Fig. 2a, b), and for fecundity with expression plasticity (differential gene 
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Fig. 1 | The strength and pattern of selection on heritable rice-leaf transcript 
levels differ across field environments. a, The Indica population showed 
significant genotype × environment (G × E) variation in fitness as determined 
by measuring the multiplicative fitness components, fecundity (magenta and 
green in wet and dry conditions, respectively) and flowering success (zero 
filled grains indicate no flowering success); variation in flowering success is 
relevant only under drought conditions. Two-way analysis of variance (ANOVA), 
G × E P = 4.68 × 10−23, n = 136 accessions. b, Distribution of broad-sense 
heritability (H2) for transcripts with significant expression polymorphism. 
Two-way ANOVA, genotype FDR-adjusted q < 0.001, n = 136 accessions. c, The 
strength of selection |S| on gene expression when considering total lifetime 
fitness differed between wet (magenta) and dry (blue) conditions.  

Mann–Whitney U-test, two-sided P < 0.001, n = 15,542 transcripts. d, Positive 
directional selection (top right, n = 7,973 transcripts) was stronger than 
negative directional selection (top left, n = 7,569 transcripts) in wet conditions 
(magenta) (Mann–Whitney U-test, two-sided P = 0.017), and selection shifted to 
more extreme values under drought conditions (blue) (Kolmogorov–Smirnov 
test, two-sided P < 0.001, n = 15,542 transcripts). e, Patterns of stabilizing  
(top left) and disruptive (top right) selection were significantly more extreme 
under drought conditions. Kolmogorov–Smirnov test, two-sided P < 0.001, 
n = 15,542 transcripts. f, Patterns of conditional neutrality (light grey) and 
antagonistic pleiotropy (magenta and blue denote transcripts beneficial in wet 
and dry conditions, respectively) for gene expression. Black indicates 
transcripts that experienced selection in the same direction in both fields.
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expression between the two environments; Pearson’s partial r > 0.017, 
P < 0.05) (Fig. 2a, Extended Data Fig. 5). This is consistent with previous 
reports that tissue specificity can minimize pleiotropic constraints on 
selection21, and expression plasticity can affect the efficacy of selection19,20. 
Supporting the importance of plasticity, accessions that induce expres-
sion of more genes under drought conditions experience fitness benefits 
(Spearman’s ρ = 0.15, P = 0.041) (Fig. 2d, Supplementary Table 16).

Gene expression is regulated through networks of transcription factors 
that interact with cis-regulatory DNA elements9, and these relationships 
have been shaped by past selection. Highly connected transcripts in regu-
latory networks should be controlled by more transcription factors9,25,26 
and have evolved to reduce the effects of expression variation on fitness, 
contributing to robustness9. Supporting this hypothesis, fitness was less 
strongly associated with the expression of genes with higher connectivity 
(Kruskal–Wallis test, H ≥ 18.94, P < 0.001), numbers of known cis-regulatory 

DNA elements and transcriptional regulators (Mann–Whitney U-test, 
z ≥ 2.74, P < 0.05) (Fig. 2e, f, Extended Data Fig. 5, Supplementary Table 17).

Because interactive network effects appear to curb the strength of 
phenotypic selection on gene expression, we hypothesize that genetic 
correlations between multivariate suites of transcripts may constrain 
the outcome of selection. We performed dimensional reduction of the 
transcriptome data using principal component (PC) analysis, and consid-
ered the principal components that explain >0.5% of overall variance as 
suites of transcripts in a multivariate selection analysis5 (Supplementary 
Table 18). We estimated linear (β) and quadratic (γ) selection gradients, 
which together measure the strength and pattern of direct (instead of 
total) selection on a trait4,5. Quadratic selection was generally weak, 
but PC7 showed significant positive directional selection under wet  
conditions (PC7wet β = 0.017, P = 1.44 × 10−6). Under drought conditions, 
PC6 displayed positive directional selection for flowering success  
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Fig. 2 | Gene-expression level, stochasticity, plasticity, tissue specificity and 
connectivity influence microevolutionary rates of expression change.  
a, b, Partial correlation analyses of factors that negatively (grey) and positively 
(mustard) influence selection strength |S| on gene expression in wet (a) and dry 
(b) conditions. Dots indicate statistical significance for Pearson’s partial r 
correlations; t-test, P < 0.05, n = 14,753 transcripts (Supplementary Table 14).  
c, Global expression stochasticity limits fecundity. Spearman’s ρ = −0.189, t-
test, P = 0.036, n = 123 accessions. d, Global expression plasticity correlates 
with fecundity under drought conditions. Spearman’s ρ = 0.15, t-test, P = 0.041, 
n = 135 accessions. e, |S| is bounded by expression connectivity. Kruskal–
Wallis test, two-sided P = 0.000017, n = 12,502 transcripts. Left, box plot with 
centre line = median, cross = mean, box limits = upper and lower quartiles, 
whiskers = 1.5 × interquartile range and points = outliers. Right, mean ± s.e.m.  
f, |S| is limited by regulatory constraints, as assessed through numbers of  

cis-regulatory promoter elements (REGs) (n = 3,907 transcripts; Mann–
Whitney U-test, P = 0.0061) and transcription factors regulating a gene (in-
degree) (n = 2,905 transcripts; Mann–Whitney U-test, P = 0.0061). Left, boxes 
and whiskers as in e. Right, mean ± s.e.m. g, Linear (β) (coloured) and quadratic 
(γ) (grey) selection gradients ( ± s.e.) on suites of transcripts as principal 
components (eigengenes). n = 408 plants. β values are for total lifetime fitness 
in wet (magenta) and dry (blue) conditions, and for flowering success (lime) 
and fecundity (green) under drought conditions. h, Prediction of the outcome 
of selection (Δz) for PC7wet and PC6dry in g, indicating that the efficacy of 
selection under drought is limited (total change (T) lower than β for total 
lifetime fitness) through genetic constraints (indirect or correlated change (I) 
and direct change (D) have opposite signs). β values are as in g for comparison. 
Extended Data Tables 1, 2 provide more details. P values are two-sided.



Nature | Vol 578 | 27 February 2020 | 575

(PC6dry β = 0.025, P = 0.023), and was marginally non-significant for total 
lifetime fitness (β = 0.032, P = 0.07) (Fig. 2g, Extended Data Tables 1, 2). 
Furthermore, fecundity selection under drought conditions was posi-
tive for PC4 (PC4dry β = 0.017, P = 0.014), whereas selection for flowering 

success had the opposite effect—albeit marginally non-significant 
(β = −0.019, P = 0.07) (Fig. 2g). We can predict the outcomes of selection 
and evolutionary constraints on gene expression using the breeder’s 
equation10. Although the principal components as multivariate suites of 
transcripts were uncorrelated at the phenotypic level, they genetically 
covaried given that individual plants were accompanied by two addi-
tional genetically identical plants in the population. Despite stronger 
selection under drought conditions, evolutionary responses to stress 
were weak owing to constraints (as evidenced by the opposite signs of 
the direct and indirect responses to selection) that arose from genetic 
correlations between gene groups (Fig. 2h, Extended Data Table 1).

Gene expression presumably influences fitness through regulating 
phenological, morphological or physiological traits, and we measured 
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Fig. 3 | Transcripts under selection could affect fitness through regulating 
early growth vigour and flowering time. a, Wet conditions (magenta) impose 
stabilizing selection on flowering time (FT) and positive directional selection 
on growth vigour (leaf area, Lf) (t-tests). Drought induces strong, positive 
flowering-success (z-test) and total-lifetime-fitness selection (t-test) on early 
flowering (lime and blue, respectively), and leads to weaker fecundity selection 
(green) (t-test) on chlorophyll concentration (Ch), early flowering and early 
growth vigour (Supplementary Table 20). Linear (β) and quadratic (γ) selection 
gradients are denoted by coloured and grey markers, respectively. 
Mean ± s.e.m., n = 408 plants; asterisks indicate selection-gradient 
significance, two-sided, unadjusted P < 0.05. b, Two transcripts with significant 
linear selection differentials (n = 408 plants; z-test, two-sided, Bonferroni-
adjusted P < 0.05 for 15,565 transcripts) for flowering success under drought 
conditions (lime) may promote drought escape through regulating early 
flowering; absolutized transcript–trait correlations are significant (Pearson’s 
|r| > 0, t-test, two-sided, unadjusted P < 0.01) (Extended Data Fig. 6). Three of 
four transcripts with significant selection differentials (n = 408 plants; t-test, 
two-sided, Bonferroni-adjusted P < 0.05 for 15,343 transcripts) for fecundity 
under drought conditions (green) may affect fitness by influencing 
photosynthesis and—consequently—early growth vigour; transcript–trait 
correlations are significantly positive (Pearson’s r > 0, t-test, two-sided, 
unadjusted P < 0.01) (Extended Data Fig. 6, Supplementary Text).
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three of these traits: (i) flowering time, (ii) leaf area and (iii) chlorophyll 
concentration (all of which display significant genetic variation) (Fig. 3a, 
Supplementary Tables 2, 19). We find stabilizing selection for flowering 
time and positive directional selection for leaf area in wet conditions. 
Drought selected for earlier flowering, and leaf area and chlorophyll 
concentration experienced positive fecundity selection (Fig. 3a, Supple-
mentary Table 20). We assessed whether selection on these traits could 
have been driven by selection on suites of transcripts. In the multivariate 
analysis, translation- and photosynthesis-related gene ontology terms 
showed loading-value enrichment on principal components with β > 0 
(Supplementary Table 21). Moreover, the levels of several photosyn-
thesis-related transcripts correlated with leaf area, chlorophyll content 
and fitness (Fig. 3b, Extended Data Fig. 6, Supplementary Tables 10, 11, 
22), indicating their expression may increase fitness through promot-
ing growth vigour11,12 (Supplementary Text). We also ranked biological 
processes by median selection strengths |S| from the univariate analyses. 
We observed different rankings between dry and wet conditions (Mann–
Whitney U-test, z = −13.51, P < 0.001) (Fig. 4): plants in wet conditions 
showed a relatively strong selection on genes related to growth and 
defence, whereas under drought conditions plants showed a stronger 
selection associated with genes involved in water deprivation responses, 
growth and flowering (Fig. 4, Supplementary Table 23).

Flowering time was the trait under strongest selection in drought 
conditions. Interestingly, expression of only a single gene (OsMADS18)—
which encoded the transcription factor OsMADS18—was both under 
selection for flowering success after Bonferroni correction (S = 0.77, 
P = 5.99 × 10−11), and coming close to significance for total lifetime fitness 
(S = 0.914, P = 3.81 × 10−6) (Fig. 3b). Increased expression of OsMADS18 
was tightly linked with early flowering (Extended Data Fig. 6), which has 
previously been functionally validated13. Furthermore, the gene sits in a 
major quantitative trait locus (QTL) for flowering and yield under drought 
conditions across O. sativa27,28, and the expression of this gene is also 
under relatively strong selection for flowering success under drought 
conditions in our Japonica population (Supplementary Table 24), sug-
gesting OsMADS18 is an important drought-escape gene11,12.

To examine the genetic architecture of fitness-related genes, we con-
ducted a genome-wide association study that mapped expression QTLs 
(eQTLs) for transcripts and expression principal components with signifi-
cant selection differentials or gradients in our Indica populations29, using 
179,634 randomly sampled single-nucleotide polymorphisms (SNPs)—or 
about 1 SNP every 2.2 kb. We observe no significant cis-eQTLs after Bon-
ferroni correction (P < 2.78 × 10−7). However, trans-eQTLs appeared for 
three of eight transcripts under drought-induced selection (Extended 
Data Fig. 7, Supplementary Tables 25–27). Although our sample size limits 
mapping power, these findings suggest trans-acting loci have key roles in 
the expression variation of fitness-related genes29. We also mapped fit-
ness component traits, and found no significant QTLs (Supplementary 
Tables 25–27). Furthermore, taking the top 0.5% of SNPs with the strongest 
association with fitness, we observed no enrichment for genes with high 
selection differentials in 100-kb regions surrounding these SNPs (χ2 = 0.088, 
P = 0.77) (Extended Data Fig. 8, Supplementary Table 27). This suggests that, 
although there may be strong selection for expression on particular genes, 
fitness continues to behave (as expected) as a polygenic trait29.

Gene expression is a fundamental molecular mechanism that is 
essential for trait development. Previous studies have focused on 
long-term transcriptome evolution across species1,2,7,18; our approach 
using phenotypic selection analysis demonstrates that measuring the 
strength and type of ongoing selection on individual genes across the 
entire genome is possible. However, our study has limitations: we are 
measuring selection on a snapshot of leaf gene expression, and it would 
be interesting to see whether selection strength varies across tissues 
and developmental time points30. If so, then the final effect of gene 
expression on adaptation may arise from the integration of expres-
sion over the entire life cycle30. Moreover, examining selection across 
more environments relevant for plants may provide further insights 

into how gene expression evolves1,2,30. Nevertheless, our work opens 
up the possibility of dissecting the intrinsic and extrinsic factors that 
drive adaptive evolution via regulated gene expression, providing cru-
cial links between adaptation at the molecular and organismal levels.
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Methods

Representative studies from the literature were used to determine 
sample size11,24,31. The investigators were blinded to the genetic identity 
of individuals in the experiment during sampling, sample processing 
and outcome assessment. The planting order of individuals was ran-
domized according to an alpha lattice design.

Plant material
Plants of 220 O. sativa accessions—136 accessions from the Indica 
varietal group (including the circum-aus and indica subgroups) and 
84 accessions from the Japonica varietal group (including the circum-
basmati, and temperate, sub-tropical and tropical japonica subgroups) 
(Supplementary Table 1), consisting of landraces and breeding lines 
and two additionally replicated checks (accessions IR64 and Sahod 
Ulan 1)—were selected for the experiment12,25,26,32–38. Seeds for all acces-
sions were obtained from the International Rice Genebank Collection 
at the International Rice Research Institute (IRRI), and from IRRI’s Rice 
Breeding Platform – Breeding for marginal environments.

Establishment of the field experiment
The field experiment was conducted during the 2016 dry season at IRRI 
in Los Baños, the Philippines. Two to three grams of seed from each of 
the accessions was sown onto a seed bed on 4 January 2016, and at 17 
days after sowing (DAS) seedlings were pulled and transplanted into two 
different experimental fields. The first, known as UJ (14° 008′ 41.5″ N,  
121° 015′ 53.8″ E), remained flooded as a wet paddy field environment. 
The second, known as UR and located in a rain-out shelter, (14° 008′ 
33.3″ N, 121° 016′ 03.4″ E), was maintained flooded until 33 DAS, at which 
time irrigation was stopped and the field was drained to initiate the 
drought-stress treatment. This dry field was rewatered by flooding 
at 53, 64 and 91 DAS to let the plants experience intermittent drought 
throughout the remainder of the season.

The experiments were arranged in an alpha lattice design with each 
accession planted in 3 replicates with 1 plant per hill in single 2-m rows 
with 0.2-m × 0.2-m spacing for a total of 1 focal plant (in the fourth 
hill) and 9 neighbouring plants per plot. Basal fertilizer was applied 
at 30 DAS using complete fertilizer (14-14-14) at the rate of 50 kg ha−1 
each of N2, P2O5 and K2O. Manual weeding was done regularly in both 
treatments. Cymbush (1 l ha−1) and Cartap (0.96 kg ha−1) were applied 
at 37 DAS, and Provado (1.92 l ha−1) was applied at 40 DAS and again at 
60 DAS to control insect pests in both treatments.

Soil moisture levels in the dry field were monitored by recording soil 
water potential using nine tensiometers (Soilmoisture Equipment) 
installed at a depth of 30 cm in each replicate, and volumetric soil 
moisture by frequency domain reflectometry (Diviner 2000, Sentek) 
at 10-cm depth increments through 70-cm PVC tubes installed at 9 
locations in the experimental area.

Leaf tissue collection for mRNA sequencing
Leaf sampling was performed at 50 DAS on the focal plant in all plots 
of the wet and dry fields from 10:00 to 12:00 (4 h after dawn) as previ-
ously described25. The aim was to collect leaf samples in the short-
est amount of time possible to minimize the effects of physiological 
changes patterned with the circadian rhythm of the plants. Four pairs 
of technicians were assigned to collect leaves, and the wet and dry fields 
were sampled simultaneously by different teams working in the same 
order by replicate and plot.

During collection, two fully expanded leaves were selected for sam-
pling. Approximately 12 cm of leaf length were cut into small pieces 
and submerged into 4 ml chilled RNALater solution in 5-ml screw-cap 
tubes. Scissors used for leaf sampling were wiped with 70% ethanol to 
avoid contamination between plots. The tubes with the collected leaf 
samples were placed on ice in a styrofoam ice chest, then transferred 
to a cold room at −4 °C overnight. A total of 1,320 tubes were used for 

the collections in the wet and dry fields. Leaf samples from each of the 
5-ml tubes were then transferred into pairs of 2-ml tubes, then stored 
at −80 °C. One 2-ml tube of each of the 1,320 pairs was sent to New York 
University in liquid -nitrogen dry shippers for long-term storage and 
further processing for mRNA sequencing.

Higher-level trait measurements
A set of physiological, morphological and phenological measure-
ments was conducted to assess individual and genotypic differences in 
drought response. In both the wet and dry fields, ground cover images 
were taken from each focal plant at 52 DAS using a high-resolution 
digital camera at the same height from the ground. Images were pro-
cessed and analysed using ImageJ software version 1.52 to determine 
the leaf area (leaf area index or per cent groundcover)39. For images 
in which other green material was present, GNU Image Manipulation 
Program (GIMP) software version 2.10.0 was used to select the leaves 
of the designated plant to determine the leaf area index (www.gimp.
org). Chlorophyll concentration (chlorophyll content index) (Apogee 
Instruments) was measured on one leaf of each focal plant at 49 DAS in 
the dry field, and 50 DAS in the wet field. Flowering time was recorded as 
the day on which 50% of plants in a plot flowered; these plants included 
the focal plant and the nine neighbouring plants.

Grain harvesting and processing
To avoid grain loss from shattering, individual panicles were harvested 
separately from the focal plant in each plot as they reached maturity, 
for a total of 1,320 plants harvested individually. Filled, partially filled 
and unfilled grains were sorted and counted with the use of a seed 
counter (Hoffman Manufacturing) except for seeds with awns, which 
were counted manually.

Preparation of RNA for library construction
Frozen leaf samples were thawed at room temperature and blotted 
briefly on a KimWipe for removal of excess RNALater. The leaf tissue 
was then flash-frozen in liquid nitrogen and pulverized in liquid nitro-
gen with a pre-cooled mortar and pestle (CoorsTek), and frozen again 
at −80 °C. Total RNA was extracted from the pulverized bulk tissue 
using the RNeasy Plant Mini Kit according to manufacturer’s protocol 
(Qiagen). The RNA was quantified on a Qubit (Invitrogen), after which 
the quality of the RNA was assessed on an Agilent BioAnalyzer (Agi-
lent Technologies). The total RNA preps were then stored at −80 °C in 
nuclease-free water.

RNA-sequencing library construction and sequencing
Total RNA for each sample was processed individually according to a 
barcoded, plate-based 3′-end mRNA sequencing (3′ mRNA-seq) pro-
tocol that presents a modification of the SMART-seq2 and SCRB-seq 
protocols40–42. In brief, aliquots of total RNA from all samples were 
transferred individually into wells in 96-well-plates, and diluted to a 
concentration of 10 ng in a total of 50 μl nuclease-free water. Then, 
the total RNA was mixed with 5 × Maxima reverse transcription buffer, 
dNTP mixture, RNase inhibitors (NxGen RNase Inhibitor, Lucigen, at 
40 μg μl−1) and water. We reverse-transcribed the mRNAs using Super-
script II Reverse Transcriptase (Thermo Fisher Scientific), and ampli-
fied cDNAs for each sample in individual wells using the Smart-seq2 
protocol41, with a custom modification in which a 12-bp well barcode 
was included in the 3′ end reverse transcriptase primer using barcoded 
oligonucleotides from the SCRB-seq protocol42. This enabled us to 
perform multiplexed pooling of 96 samples before library prepara-
tion with the Nextera XT DNA sample prep kit (Illumina) and returned 
3′-biased cDNA fragments, similar to the Drop-seq protocol14. Each 
library consisted of a pool of 96 sister samples—that is, 48 samples 
from the wet field environment were matched with samples from the 
same plot numbers in the dry field environment. We quantified the 14 
cDNA libraries on an Agilent BioAnalyzer and sequenced them at 2 × 50 
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bases on the Illumina NextSeq 500 using the following settings: read 
1 was 20 bp (bases 1–12, well barcode; bases 13–20, unique molecular 
identifier (UMI)), and read 2 (paired end) was 50 bp.

RNA-sequencing data processing
The 3′ mRNA-seq read data were quantified according to the McCarroll  
Laboratory Drop-seq Cookbook using Drop-seq tools version 1.12 
( J. Nemesh and A. Wysoker, https://github.com/broadinstitute/
Drop-seq/releases), a wrapper for aligning and parsing both reads 
and their embedded barcodes with the STAR aligner version 020201. 
The reference genome used by STAR was Nipponbare IRGSP 1.0 
(GCF_001433935.1) including plastids. A reference annotation was 
generated from Ensembl’s IRGSP nuclear O. sativa genome annota-
tion (1.0.37) (ftp://ftp.ensemblgenomes.org/pub/plants/release-37/
gff3/oryza_sativa) and supplemented with the Refseq Mitochondrial 
and Chloroplast annotations (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/
GCF/001/433/935/GCF_001433935.1_IRGSP-1.0). Metadata were gener-
ated with Picard tools version 2.9.0 (https://broadinstitute.github.
io/picard/) and Drop-seq tools. The genome and annotations were 
indexed using STAR (genomeGenerate with options --runThreadN 
12 --genomeDir inc_plastids --genomeFastaFiles Oryza_sat_CpMt.fa 
--sjdbGTFfile 1.0.37_all.gtf --sjdbOverhang 49). Where necessary, anno-
tations were converted between RAP-DB and MSU-7 identities using 
the Rice Annotation Project’s conversion table (RAP-MSU_2017-04-14.
txt, latest version is at https://rapdb.dna.affrc.go.jp/download/irgsp1.
html). For quantification, raw reads were first converted from FASTQ 
to unaligned BAM format using Picard tools FastqToSam and subse-
quently processed using the unified script (Drop-seq_alignment.sh) 
in essentially default mode for a FASTQ starting format. Digital gene-
expression profiles were then generated with the DigitalExpression 
utility, with the expected number of barcodes (indicative of individual 
samples rather than droplets in our case) set to 96. For quality assur-
ance purposes, the digital gene-expression profiles were output both 
as UMI count and raw read count matrices with transcripts as rows and 
samples as columns. The values represent the number of raw reads or 
UMIs that were detected.

To distinguish sample barcodes arising from beads exposed to 
total RNA from an individual rice plant, rather than those that cor-
responded to beads never exposed to RNA, we ordered each of the 
UMI digital gene-expression matrices from our first 13 libraries by the 
total number of transcribed elements per barcode, and plotted each 
barcode in the matrix by the number of transcribed elements from 
highest to lowest number. As previously described14, Drop-seq-type 
data always display a ‘knee’ at a sample barcode number that is equal 
to or just under the known number of samples included. All sample 
barcodes with a number of transcribed elements that was larger than 
this cutoff were used in downstream analyses, and the remaining sample 
barcodes were discarded. Samples with RNA-seq data that had to be 
discarded were replaced by extracting RNA from a back-up sample, 
and these replacement samples were included in the remaining slots 
of our fourteenth library.

Data normalization
The aim of normalization is to make expression levels comparable 
between samples by removing the effect of sequencing depth, and 
technical sources of heterogeneity (in our case the processing of sam-
ples in different libraries) that may confound the signal of interest. To 
account for differences in the total number of molecules sequenced 
per library, we normalized UMI counts from each sample by dividing 
by the total number of UMIs detected in that sample. These numbers 
were multiplied by 1 × 106 to obtain transcripts per million. This scal-
ing factor largely represents a consistent increase or decrease across 
all positive values in our dataset. We then merged the 14 pruned digi-
tal gene-expression matrices into one super-matrix that contained 
transcripts-per-million expression data for all 1,320 samples after the 

low-quality samples had been removed. After this, very lowly tran-
scribed elements (transcript models with a sigma signal < 20) were 
filtered out, and a relatively strong normalization was applied to the 
remaining elements in the matrix through invariant set normalization 
using the DChip utility version 2010.0143 (Wong Laboratory, https://
sites.google.com/site/dchipsoft/). These steps ensured that rarely 
encountered elements were filtered out and that confounding technical 
effects were removed. All downstream calculations were performed in 
log-space, using normalized levels (log2(normalized transcripts-per-
million value + 1)) of transcribed elements that were obtained using 
the R (version 3.4.3) package edgeR version 3.1444,45. To make sure we 
did not consider transcripts that are relevant only for accessions in the 
temperate japonica subgroup of which Nipponbare is a representa-
tive38, we kept only transcripts from protein-coding genes on nuclear 
chromosomes that were detected in at least 10% of individuals across 
our populations for all subsequent analyses.

Quantitative genetics of gene expression
Expression measures were then processed by ANOVA to partition phe-
notypic variation. For each gene-expression trait, we fit a mixed-effect 
general linear model, including a term for accession or genotype (G) 
as a random factor, field environment (E) as a fixed factor, the G × E 
interaction as a random factor and the error variance (ε). The signifi-
cance of the variance explained by each of the factors was tested using 
an F-test. In these analyses, we controlled for multiple testing using a 
FDR-adjusted q value of 0.00146. Statistical analyses were carried out 
using the lme4 package version 1.1 in R45,47, and were performed sepa-
rately for the Indica and Japonica populations to control for the major 
source of population structure in O. sativa. We estimated broad-sense 
heritabilities as H2 = 0.5 × σ2

G/(0.5 × σ2
G + (0.5 × σ2

GE/e) + (σ2
E/re)), in which 

σ2
G, σ2

GE and σ2
E are the among-genotype, G × E and within-genotype 

variance components (respectively), e is the number of environments 
and r is the number of replicates per environment. Because the pre-
dominant reproductive mode of O. sativa is selfing, we applied the 
factor 0.5 to adjust for the twofold overestimation of additive genetic 
variance among inbred accessions31. We estimated cross-environment 
genetic correlations as rWD = covij/σiσj, in which covij is the covariance 
of accession means between a trait as i in the wet and j in the dry field 
environments, and σi and σj are the square roots of the among-genotype 
variance components for the trait in the wet and dry field environments.

Gene set enrichment analysis on differentially expressed 
transcripts
We performed gene set enrichment analysis (GSEA) to obtain addi-
tional biological insight into the transcripts with a significant field-envi-
ronmental bias (significant E term and log2-transformed fold change 
of ≥ 1.5) in their abundance using the PlantGSEA analysis pipeline ver-
sion 1 at default settings48.

Univariate phenotypic selection analyses
We measured the strength of selection on gene expression separately 
for the O. sativa Indica and Japonica populations in each of the two field 
environments. We used univariate regression to estimate the covari-
ance between the expression level of each transcript individually and 
total lifetime fitness across the populations in the wet and dry fields, 
as well as the multiplicative fitness components flowering success 
and fecundity for the populations under drought conditions4,5,16,49. To 
prepare data for univariate selection analysis for total lifetime fitness 
in the wet field, we removed individuals with zero fecundity fitness 
(no filled grains produced) from the analysis (59 for Indica and 33 for 
Japonica), because these presented too few individuals for a selection 
analysis on flowering success—leaving fecundity fitness as a proxy for 
total lifetime fitness.

For selection analyses for fecundity fitness, the filled grain number 
for each individual plant was normalized by dividing by the mean filled 
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grain number of the population after filtering out individuals with zero 
fecundity fitness in the previous step: w′ = wi/mean(w). After this, the 
abundance values of each transcript across individuals expressing 
that transcript were standardized by subtracting the population mean 
abundance of the transcript and dividing by the s.d. of the abundance 
of that transcript over the population: z = (xi − mean(x))/s.d.(x). Finally, 
individuals that were severe outliers for the relative abundance of a 
transcript (±3 s.d.) were removed on a per-transcript basis to satisfy the 
assumption of normality for the selection analyses. Only transcripts 
that were expressed in at least 20 individuals in a population were used 
for analysis using a custom script in Python version 2.7 (Supplemen-
tary Note 1).

We performed separate analyses to estimate the strength and direc-
tion of selection on gene expression for the fitness component flow-
ering success using univariate logistic regression for each individual 
transcript (expressed in ≥ 20 individuals) across all individuals in the 
populations in the dry field environment50, again using a custom Python 
script (Supplementary Note 2). Flowering success was defined as a 
binary state in which individuals were given a value of 1 if they were 
able to produce at least one filled grain before the end of the grow-
ing season, and 0 if not. Because, in our study, flowering success and 
fecundity are multiplicative fitness components16, we added up the 
selection differentials and error estimates for these fitness components 
under drought conditions to establish selection differentials and error 
estimates for total lifetime fitness in dry conditions51.

Both the linear and logistic regression analyses output standardized 
directional-selection differentials (S = cov[w, z]), and disruptive- or bal-
ancing-selection differentials (C = cov[w, (z − mean(z) (z − mean(z))T)]) 
that reflect the total (direct and indirect) selection on the expression 
level of a gene4,5.

Multivariate phenotypic selection analyses
For each population, we performed separate dimensional reductions 
on the transcriptome datasets per field environment through principal 
component analysis (PCA) using the prcomp function in R45,52, and 
conducted multivariate selection analyses for total lifetime fitness in 
the wet and dry environments, and for flowering success and fecundity 
in the dry environment5,49–51. We calculated both the linear selection 
gradients, (β = P−1 S), and quadratic selection gradients, (γ = P−1 C P−1), in 
which P represents the phenotypic variance–covariance matrix of the 
transcript abundances included as traits5. Selection gradients for total 
lifetime fitness under drought conditions were obtained in the same 
way as described in ‘Univariate phenotypic selection analyses’. The 
selection gradients reflect the strength and direction of direct selec-
tion on a trait. In addition to determining the pattern and strength of 
selection on gene expression, we also estimated selection differentials 
and gradients for the three higher-level traits we measured: chlorophyll 
concentration, flowering time and leaf area.

Factors affecting the strength of selection on gene expression
We performed a series of analyses to assess whether there are fac-
tors that might be linked to the heterogeneity of selection strengths 
between different transcripts. For the Indica population, the covariates 
of expression level, stochastic noise and polymorphism were directly 
derived from the transcript expression super-matrix with expression 
level defined as the grand mean expression level of a transcript in each 
field environment, expression noise defined as the average variance in 
the abundance of a transcript between individual replicates of all acces-
sions and expression polymorphism as the population-wide variance 
between accession mean expression levels. Transcript H2 and rWD were 
calculated as described in ‘Quantitative genetics of gene expression’.

For nearly all transcripts, information on their length and GC con-
tent could be downloaded from the Ensembl Plants BioMart release 
43 (https://plants.ensembl.org/biomart/martview) O. sativa Japonica 
IRGSP-1.0 dataset. In addition, we obtained tissue-specific expression 

data for 29,122 genes in 9 tissues from the EMBL-EBI Expression Atlas, 
experiment E-MTAB-2039 (https://www.ebi.ac.uk/gxa/experiments/ 
E-MTAB-2039/Results), originally generated in a previous publication53. 
From these data, the tissue specificity index value for each gene was 
calculated:

τ
x

n
=

∑ (1 − )
− 1

i
n

i=1

in which n is the number of tissues and xi is the normalized expres-
sion profile component54. For each of the covariates described thus 
far, information was available for the vast majority of all transcripts 
(n = 14,753 transcripts or 94.4%) that were included in our phenotypic 
selection analyses.

The nine covariates did not have irregular distributions and were 
included in a partial correlation analysis (n = 14,753 transcripts) using 
the R package corpcor version 1.6.945,55. We started by calculating para-
metric Pearson product–moment correlations between pairs of all vari-
ables for each field environment by selection component combination, 
after which we estimated the partial correlations by establishing the 
pseudo-inverse of the resulting correlation matrices7,56.

Relation between fitness and global gene-expression 
stochasticity and plasticity
We computed mean values for fecundity across replicates for each 
accession that were included in the phenotypic selection analyses, and 
correlated these fitness values with genome-wide (global) measures 
of gene-expression stochasticity and plasticity (the latter only for the 
dry field environment). To obtain estimates of global gene expression 
plasticity, we performed targeted ANOVA for each accession individu-
ally by fitting a fixed-effect general linear model, including a term for 
field environment (E) as a fixed factor, and the error variance (ε). The 
significance of the variance explained by the environment factor was 
tested using an F-test. The number of significant drought-induced 
transcripts at FDR-adjusted q < 0.05 for an accession was taken as a 
proxy for global gene-expression plasticity for that accession15.

To obtain estimates of global gene-expression stochasticity for acces-
sions in each field environment, we averaged the variance across the 
three replicate individuals of an accession for all transcripts as previ-
ously described24, after we calculated the level of stochastic noise for 
each transcript within an accession as σ2/μ2, variance divided by the 
mean squared, known as CV2 (the squared coefficient of variation)57. 
Our measure of expression stochasticity is corrected by including 
expression level as a covariate in the analysis, just as it was in the 
partial correlation analysis. The relation between fitness and global 
gene-expression plasticity and stochasticity was obtained through 
computing nonparametric Spearman’s rank correlation coefficients.

Network effects on the strength of selection on gene expression
We performed separate analyses on four independent measures of 
network effects on the strength of selection on gene expression. We 
obtained measures of within-cluster connectivity from 53 clusters 
of 17,931 co-expressed transcripts that were previously derived from 
transcriptome data of 240 samples25. These samples were taken in time 
series from Indica and Japonica accessions growing in wet (irrigated, 
flooded paddy) and dry (rain-fed) field environments across a dry and 
a wet season, in the same geographical location as our experiment.

The number of cis-regulatory element groups in the promoter regions 
(from −1 kb to +200 bp relative to the transcription start site) of 3,907 
genes that overlapped with genes in our analysis were obtained from 
the Plant Promoter Database (PPDB) version 3.058, which we accessed 
at http://ppdb.agr.gifu-u.ac.jp/ppdb/cgi-bin/index.cgi. Only those 
cis-regulatory element groups that correspond to known cis-elements 
were included59. The median number of cis-regulatory element groups 
per promoter was 5, and we tested whether the expression of genes 
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with up to 5 cis-regulatory element groups in their promoter (n = 2,141 
transcripts) experienced stronger selection than the expression of 
genes with 6 or more cis-regulatory element groups in their promoter 
(n = 1,766 transcripts) by performing a Mann–Whitney U-test.

The number of transcription factors predicted to regulate the abun-
dance of each transcript in a network context (that is, the ‘in-degree’ of 
each gene) was obtained from 2,905 transcripts in previously created 
environmental gene regulatory influence networks26 that overlapped 
with transcripts in our analysis. The environmental gene regulatory 
influence networks were built through combining prior knowledge 
on experimentally validated or inferred transcription-factor binding 
preferences60, with rice gene-expression and chromatin-accessibility 
data from plants grown in wet and dry conditions25,26. We tested whether 
the level of transcripts predicted to be regulated by one transcrip-
tion factor (n = 1,505) experienced stronger selection than the level of 
transcripts predicted to be regulated by more than one transcription 
factor (n = 1,400) by performing a Mann–Whitney U-test.

GSEA on transcripts under selection
We performed GSEA to obtain additional biological insight into the 
transcripts in the 5% tails of the distributions of transcripts’ loading 
values on principal components with significant selection gradients, 
and of the P value distributions of the transcripts’ selection differentials 
for total lifetime fitness in wet and dry conditions, and for fecundity 
and flowering success under drought conditions using the PlantGSEA 
analysis pipeline version 1 at default settings48.

Ranking Gene Ontology biological processes by selection 
strength
Gene Ontology term annotations were downloaded from Monocots 
PLAZA 4.061,62. We obtained biological-process Gene Ontology anno-
tations for 11,901 transcripts that overlapped with transcripts in our 
analyses. To minimize redundancy among Gene Ontology terms, we 
focused our analysis on biological-process Gene Ontology terms that 
were represented in the annotations of at least 20 transcripts in our 
dataset. This resulted in the inclusion of 6,161 transcripts with Gene 
Ontology biological-process term annotations in our analysis.

We used the median selection strength |S| of all transcripts anno-
tated to be involved in a particular biological process as a proxy for 
the selection strength |S| on that process. By setting the minimum size 
per term as at least 20 transcripts and by considering the median |S| 
for each Gene Ontology term, we not only limited redundancy but 
also avoided estimates of selection strength per Gene Ontology term 
being influenced by small group sizes. We tested for rank shifts in the 
order of biological processes by their median |S| between field environ-
ments for total lifetime fitness through conducting Mann–Whitney 
U-tests (n = 243 biological processes per group). Furthermore, per field 
environment by fitness component combination, we considered any 
biological process to be under significantly stronger selection than the 
transcriptome-wide median (n = 6,161 transcripts) if the median selec-
tion strength for a process was removed from the transcriptome-wide 
median selection strength by at least the 95% confidence interval for 
the selection strength of that process.

Transcript associations with higher-level traits
We identified transcripts significantly associated (P < 0.01) with the 
three higher-level organismal traits we measured (chlorophyll concen-
tration, flowering time and leaf area) for the Indica population in each 
field environment by using regression models: Y = μ + T + ε, in which Y 
represents the higher-level trait of interest, μ an intercept parameter, 
T denotes the transcript covariate and ε residual error.

Selection of DNA sequence read data
Raw FASTQ reads from 27 accessions included in the 3K-RG project 
were downloaded from the Sequence Read Archive (SRA) website 

under BioProject PRJEB618038. For a further 188 accessions, raw FASTQ 
reads were downloaded from SRA BioProject accession numbers 
PRJNA422249 and PRJNA55712234. DNA sequence data were available 
for 215 out of 220 accessions; one accession was a ‘filler’ accession and 
its genome was not resequenced, and a further four accessions were 
replicated checks of two accessions, IR64 and Sahod Ulan 1. Acces-
sion numbers and origins of tissue for DNA extraction can be found in 
Supplementary Table 1. Overall, a total of 1,203,564,772,205 bp (about 
1.2 Tbp) were included for downstream analyses.

Reference-genome-based DNA read alignment
FASTQ reads were preprocessed using the bbduk program of BBTools 
version 37.66 (https://jgi.doe.gov/data-and-tools/bbtools/) for read 
quality control and adaptor trimming. For bbduk, we used the options: 
minlen = 25 qtrim = rl trimq = 10 ktrim = r k = 25 mink = 11 hdist = 1 tpe 
tbo. This trimmed reads below a phred score of 10 on both sides of 
the reads to a minimum length of 25 bp, trimmed 3′ adapters using a 
k-mer size of 25 as well as a k-mer size of 11 for ends of reads, allowed 
one Hamming distance mismatch, trimmed adapters based on over-
lapping regions of the paired-end reads, and trimmed reads to equal 
lengths if one of them was adaptor-trimmed. FASTQ reads were aligned 
to the reference O. sativa Nipponbare IRGSP 1.0 genome downloaded 
from EnsemblPlants release 37 (ftp://ftp.ensemblgenomes.org/pub/
plants/). Read alignment was done using the program bwa-mem version 
0.7.16a-r118163. Only the 12 pseudomolecules were used as a reference, 
and the unassembled scaffolds were left out. PCR duplicates during 
the library preparation step were determined computationally and 
removed using the Picard tools version 2.9.0.

SNP calling
For each accession, genotype calling for each site was conducted using 
the GATK HaplotypeCaller engine version 3.8-0-ge9d806836 in the 
-ERC GVCF mode to output files in the genomic variant call format 
(gVCF). The gVCF files from each accession were merged together 
to conduct multi-accession joint genotyping using the GATK Geno-
typeGVCFs engine. Genotypes were divided into SNP or insertion and 
deletion (indel) variants and filtered using the GATK bestpractice hard 
filter pipeline64. For SNP variants we excluded regions that overlapped 
repetitive regions and variants that were within 5 bp of an indel variant. 
We then used vcftools version 0.1.15 to select SNPs that had at least 
80% of sites with a genotype call, and exclude SNPs with minor allele 
frequency <5% to remove potential false-positive SNP calls arising from 
sequencing errors or false genotype calls65. Because domesticated 
rice is an inbreeding species, we also implemented a heterozygosity 
filter for sites that had a heterozygous genotype in more than 5% of the 
samples using the program vcffilterjdk.jar from the jvarkit suite version 
1 (https://figshare.com/articles/JVarkit_java_based_utilities_for_Bio-
informatics/1425030). Missing genotypes were imputed and phased 
using Beagle version 4.166. Finally, we randomly pruned the SNPs by 
sampling a polymorphic site every 1,000 bp using plink version 1.967, 
leaving a SNP dataset of 179,634 markers.

G-matrix estimation and prediction of short-term phenotypic 
evolution
A G-matrix consists of the additive genetic variances and covari-
ances of a series of traits, and we assembled one for the principal 
component axes as eigengenes or reflections of suites of transcripts 
in our transcriptome data across rice individuals. Although the prin-
cipal components are—by definition—uncorrelated at the level of 
the individual replicate plants at which we generated them, they 
start showing genetic covariances when loading values of replicates 
of each genotype are averaged. Estimates of additive genetic vari-
ance and covariance were obtained using a previously described 
approach68. First, we constructed a kinship matrix from the SNP data-
set using the VanRaden method in the R package GAPIT version 3,  
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a genome association and prediction integrated tool69,70. We let GAPIT 
estimate the contribution of structure between accessions to each 
trait (principal component) using a variance component model, 
providing us with the fraction of phenotypic variance explained 
by the kinship matrix. This fraction (termed pseudo-heritability) 
resembles the narrow-sense heritability estimated from a pedigree, 
and serves as an estimate of the additive genetic variance of a trait71. 
We then applied a bivariate genetic model as previously outlined68 to 
obtain estimates of the additive genetic covariance between traits 
and principal components.

We used the G-matrix to predict the outcome of selection on gene 
expression across one generation (Δz), and assess whether evolution-
ary constraints were present, by combining it with the linear selection 
gradients on the principal components in the multivariate breeder’s 
equation: Δz = G β.

Genome-wide association study
We conducted genome-wide association mapping in GAPIT by apply-
ing a multi-locus linear mixed model, a model based on EMMA that 
uses forward–backward stepwise linear mixed-model regression to 
estimate variance components72,73. We included population structure 
cofactors as well as the kinship matrix described in ‘G-matrix estima-
tion and prediction of short-term phenotypic evolution’ as a random 
factor in the model. Structure in our Indica population of 131 different 
genotypes was inferred with a PCA, and GAPIT used the first four prin-
cipal components as cofactors (Supplementary Table 26). Significant 
SNPs were identified using a conservative Bonferroni threshold74, which 
was at P < 2.78 × 10−7. Finally, we selected the top approximately 0.5% 
SNPs (1,000 SNPs) based on P value for association with total lifetime 
fitness in each environment75, with the aim of testing whether the  
100-kbp windows surrounding these SNPs were enriched for transcripts 
classed as showing non-neutral microevolutionary selection patterns 
(selection strength |S| P < 0.05). The window size was chosen as a range 
of 50 kbp at either side of a SNP, which is conservative given an esti-
mated breakdown of linkage disequilibrium in a range of 75–125 kbp 
in O. sativa subgroup indica38,76–78.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Raw FASTQ reads for 188 accessions with resequenced genomes were 
downloaded from the SRA under SRA BioProject accession numbers 
PRJNA422249 and PRJNA557122. Raw FASTQ reads for a further 27 acces-
sions included in the 3K-RG project were downloaded from the SRA 
under BioProject accession number PRJEB6180. RNA sequence data 
that support the findings of this study have been deposited under SRA 
BioProject accession number PRJNA588478. Processed RNA expres-
sion count data have been deposited in Zenodo (https://zenodo.org/
record/3533431 with DOI 10.5281/zenodo.3533431), alongside a sample 
metadata file with a key to the RNA sequence data in SRA BioProject 
accession number PRJNA588478. This key can also be found in Supple-
mentary Table 4. Source Data for Figs. 1–4 and Extended Data Figs. 1–8  
are provided with the paper.

Code availability
Selection analyses were run using custom-made scripts in Python ver-
sion 2.7, which are available in Supplementary Notes 1, 2, and on GitHub 
in repositories icalic/Linear-regression-analysis (https://github.com/
icalic/Linear-regression-analysis.git) and icalic/Logistic-regression-
analysis (https://github.com/icalic/Logistic-regression-analysis.git). 
For all other analyses we used previously developed, publicly available 

software and code: leaf area was assessed using ImageJ v.1.52 and GIMP 
v.2.10.0; RNA-seq data were processed and analysed using Drop-seq 
tools v.1.12, STAR aligner v.020201, Picard tools v.2.9.0, DChip v.2010.01 
and R v.3.4.3 packages edgeR v.3.14 and lme4 v.1.1; gene-set enrichment 
analyses were performed using PlantGSEA v.1; statistical analyses were 
performed in R v.3.4.3, further using packages lme4 v.1.1 and corpcor 
v.1.6.9; and genome analyses were performed using bbduk v.37.66, 
bwa-mem v.0.7.16a-r1181, the GATK GenotypeGVCFs engine v.3.8-0-
ge9d806836, vcftools v.0.1.15, jvarkit suite v.1, Beagle v.4.1, plink v.1.9 
and GAPIT v.3.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Experimental setup. a, Geographical origins of 
220 O. sativa accessions, of which 4 constitute additionally replicated checks 
(Supplementary Table 1). Seven accessions that are not from Eurasia or Africa 
are not shown. Varietal group (vg.) Indica accessions are indicated in indigo and 
vg. Japonica accessions are indicated in jade. Map data ©2019 Google.  
b, Populations of Indica and Japonica accessions (planted in triplicate 
alongside one another) were monitored for total lifetime fitness in wet 
(magenta) and dry (blue) fields. Both fields had identical layouts. Numbers 
reflect Indica populations with 3 × 136 accessions = 408 individuals planted in 
each field; Extended Data Fig. 3 shows Japonica populations. Under drought 
conditions, both multiplicative fitness components (flowering success (lime) 
and fecundity (green)) were relevant (multiplying to total lifetime fitness), but 
in wet conditions only the latter was relevant (fecundity equating to total 
lifetime fitness, magenta). c, Drought exerts truncating selection on the 

populations (declining and shifting blue versus magenta bar), and end-of-
season was reached earlier under drought conditions. d, Cumulative rainfall 
shows one major rainfall event that caused the rainout shelter over the dry field 
to close temporarily after the start of the drought treatment and the sampling 
of leaf tissue for RNA sequencing (>51 DAS). e, During the period of flowering 
(>51 DAS), there was an increasing deficit in soil water potential. f, g, Patterns of 
volumetric soil moisture and vapour pressure deficit (VPD) were consistent 
with the pattern of soil water potential. Lighter shades of grey in f indicate 
deeper layers of soil. Grey and mustard lines in g indicate the VPD in the wet and 
dry field, respectively. h, Day length increased over the course of the 
experiment. i, Air temperature generally increased over the course of the 
experiment (grey and mustard lines indicate the wet and dry field, 
respectively).



Extended Data Fig. 2 | Systems genetics of gene expression in the Indica 
populations in wet and dry field environments. a, Environmental bias for 
transcript expression. Magenta and blue dots represent transcripts showing a 
1.5-fold difference in expression between the wet and dry field environments, 
respectively. ANOVA, Indica environment FDR-adjusted q < 0.001, 
n = 136 accessions. b, Distribution of cross-environment genetic correlations 
(rWD) for transcripts showing significant (blue) genotype × environment (G × E) 
variance. ANOVA, Indica genotype × environment FDR-adjusted q < 0.001, 
n = 136 accessions.
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Extended Data Fig. 3 | Systems genetics of gene expression in the Japonica 
populations in wet and dry field environments. a, Monitoring the Japonica 
populations, with 3 × 84 accessions = 252 individuals planted in both the wet 
and dry fields, for flowering success, fecundity fitness and total lifetime fitness 
(legend as in Extended Data Fig. 1b, c). b, Environmental bias for transcript 
expression. Magenta and blue dots represent transcripts showing a 1.5-fold 
difference in expression between the wet and dry field environments, 

respectively. ANOVA, Japonica environment FDR-adjusted q < 0.01, 
n = 84 accessions. c, Distribution of broad-sense heritabilities (H2) for 
transcripts with significant expression polymorphism. ANOVA, Japonica 
genotype FDR-adjusted q < 0.01, n = 84 accessions. d, Distribution of cross-
environment genetic correlations (rWD) for transcripts showing significant 
(blue) genotype × environment (G × E) variance. ANOVA, Japonica 
genotype × environment FDR-adjusted q < 0.01, n = 84 accessions.



Extended Data Fig. 4 | The strength and pattern of selection on Indica rice-
leaf transcript levels under drought conditions differ across fitness 
components. a, The strength of selection |S| on gene expression differed 
between selection for flowering success (lime), and fecundity (green) in the dry 
field. Mann–Whitney U-test, two-sided P < 0.001, n = 15,343. b, Positive 
directional selection (n = 11,304) was stronger than negative selection 
(n = 4,039) for fecundity under drought (green) (Mann–Whitney U-test, two-
sided P < 0.001), and selection for flowering success showed higher absolute 

values (Kolmogorov–Smirnov test, two-sided P < 0.001, n = 15,343). c, Patterns 
of quadratic selection differed significantly for the two fitness components. 
Kolmogorov–Smirnov test, two-sided P < 0.001, n = 15,343. d, Patterns of 
conditional neutrality (light grey) and antagonistic pleiotropy (lime and green 
for transcripts beneficial for flowering success and fecundity, respectively) for 
gene expression under drought conditions. Black indicates transcripts that 
experienced selection in the same direction for both fitness components.
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Stochastic expression noise and transcript 
connectivity limit the efficacy of selection on gene expression. a, b, Partial 
correlation analyses of factors that negatively (grey) and positively (mustard) 
influence the strength of selection |S| on gene expression for flowering success 
(a) and fecundity (b) fitness in dry conditions. Dots indicate statistical 
significance of Pearson’s partial r (t-test, two-sided P < 0.05, n = 14,753) 
(Supplementary Table 14). c, Global expression stochasticity limits fecundity 
under drought conditions. Spearman’s ρ = −0.174, t-test, two-sided P = 0.042, 
n = 136 accessions. d, As in wet conditions, |S| is bounded by expression 
connectivity under drought conditions. Kruskal–Wallis test, P = 0.0008, 

n = 12,502 transcripts. Left, box plot with centre line = median, cross = mean, 
box limits = upper and lower quartiles, whiskers = 1.5 × interquartile range, 
points = outliers. Right, mean ± s.e.m. e, In dry as well as in wet conditions, |S| is 
limited by gene regulatory constraints as assessed through the number of  
cis-regulatory elements in the promoter (n = 3,907 transcripts, Mann–Whitney 
U-test, two-sided P = 0.000015), and the number of transcription factors 
regulating a gene (n = 2,905 transcripts, Mann–Whitney U-test, two-sided 
P = 0.0027) illustrated for selection for total lifetime fitness under drought. 
Left, boxes and whiskers as in d. Right, mean ± s.e.m.
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Extended Data Fig. 6 | Distributions of transcript–trait correlations for the 
three higher-level traits measured in the dry field environment. a, Absolute 
Pearson’s correlations |r| of transcripts with leaf area (green). 
n = 15,635 transcripts. The cloud delineates transcripts (listed) that show 
significant linear or quadratic selection differentials for fecundity under 
drought conditions, and significant correlations with leaf area (Supplementary 
Text). b, Absolute Pearson’s correlations |r| of transcripts with chlorophyll 
concentration (green). n = 15,635 transcripts. The cloud delineates a transcript 

that shows a significant quadratic selection differential for fecundity under 
drought conditions, and a significant correlation with chlorophyll 
concentration (Supplementary Text). c, Absolute Pearson’s correlations |r| of 
transcripts with flowering time (lime). n = 15,635 transcripts. The cloud 
delineates transcripts (listed) that show significant linear selection 
differentials for flowering success under drought conditions, and significant 
correlations with early flowering (Supplementary Text).



Extended Data Figure 7 | Genome-wide association mapping of the genetic 
architecture of transcripts that covary significantly with fitness in the 
Indica population under drought conditions. Three out of eight transcripts 
are partially controlled by trans-eQTLs (illustrated for expression of the 
glycine-rich family protein-coding gene Os11g0209000 under drought 
conditions). Supplementary Table 27 provides results for other transcripts and 
for expression principal components or eigengenes as suites of transcripts.  
a, PCA of 179,634 SNP markers from the Indica population that were selected 

for analysis; the three principal components, plus a fourth, were included as 
cofactors in the multi-locus linear mixed model. b, Distribution of expected 
versus observed P values for associations between SNP markers and 
Os11g0209000 expression in a Q–Q plot. n = 131 genotypes; multi-locus linear 
mixed model, two-sided, Bonferroni-adjusted P < 0.05 for 179,634 SNP markers. 
c, The Manhattan plot indicates two significant trans-eQTL peaks for 
expression of Os11g0209000 (gene location indicated with vertical red bar). 
Only the top approximately 5% of SNPs (10,000 SNPs) are shown.
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Extended Data Fig. 8 | Genome-wide association mapping for fitness in the 
wet and dry field environments. Taking the top approximately 0.5% of SNPs 
(1,000 SNPs) with the strongest association to total lifetime fitness in the wet 
(magenta) and dry (blue) field conditions after genome-wide association 
mapping, we observed no enrichment for transcripts (n = 809 and 
142 transcripts in the wet and dry fields, respectively) that were expressed in 
the leaves and had significant linear selection differentials S (n = 408 plants, t-
test, two-sided, unadjusted P < 0.05) among transcripts (n = 1,960 transcripts in 
the wet field and n = 1,671 transcripts in the dry field) from genes in 100-kb 
regions surrounding these SNPs, compared to transcripts from genes in other 
genomic regions (χ2, not significant (ns); two-sided P = 0.862 for the wet field 
and P = 0.85 for the dry field). Supplementary Table 27 provides genome-wide 
association mapping results for total lifetime fitness in wet and dry conditions, 
and for flowering success and fecundity under drought conditions.



Extended Data Table 1 | Phenotypic selection gradients, G-matrices and outcomes of selection for transcript levels in wet 
and dry conditions

The selection gradients describing nonlinear (γ) and linear (β) selection on principal components of genome-wide transcript abundance, the matrix of additive genetic variances and covari-
ances of these principal components (G-matrix), and the outcome of selection (Δz) for total lifetime fitness in wet and dry conditions. n = 408 plants, t-test, two-sided, adjusted P < 0.05.
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Extended Data Table 2 | Phenotypic selection gradients on transcript levels for flowering success, fecundity and lifetime 
fitness in dry conditions

The selection gradients describing nonlinear (γ) and linear (β) selection on principal components of genome-wide transcript abundance for flowering success, fecundity and total lifetime  
fitness in dry conditions. n = 408 plants, z-test for flowering success and t-test for fecundity, two-sided, unadjusted P < 0.05.



1

nature research  |  reporting sum
m

ary
O

ctober 2018

Corresponding author(s): Michael D. Purugganan

Last updated by author(s): Nov 14, 2019

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection The genomic data used were downloaded from SRA BioProjects PRJEB6180, PRJNA422249, and PRJNA557122. The reference genome 
used by STAR was Nipponbare IRGSP 1.0 (GCF_001433935.1) including plastids. A reference annotation was generated from Ensembl's 
IRGSP nuclear O. sativa genome annotation (1.0.37, ftp://ftp.ensemblgenomes.org/pub/plants/release-37/gff3/oryza_sativa) and 
supplemented with the Refseq Mitochondrial and Chloroplast annotations (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/433/935/
GCF_001433935.1_IRGSP-1.0).

Data analysis Leaf area was assessed using ImageJ v1.52 and GIMP v2.10.0. RNA-seq data were processed and analyzed using Drop-seq tools v1.12, 
STAR aligner v020201, Picard tools v2.9.0, DChip v2010.01 and R v3.4.3 packages edgeR v3.14 and lme4 v1.1. Selection analyses were run 
using custom-made scripts in Python version 2.7 that are available here in Supplementary Notes 1 and 2, and on GitHub in repositories 
icalic/Linear-regression-analysis and icalic/Logistic-regression-analysis. Gene-set enrichment analyses were performed using PlantGSEA 
v1. Statistical analyses were performed in R v3.4.3, further using packages lme4 v1.1 and corpcor v1.6.9. Genome analyses were 
performed using bbduk 37.66, bwa-mem v0.7.16a-r1181, the GATK GenotypeGVCFs engine v3.8-0-ge9d806836, vcftools v0.1.15, jvarkit 
suite v1, Beagle v4.1, plink v1.9 and GAPIT v3.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Raw phenotype data are available in the Supplementary Table and Source Data files. Raw RNA sequence data that support the findings of this study have been 



2

nature research  |  reporting sum
m

ary
O

ctober 2018
deposited in the SRA under BioProject accession number PRJNA588478, and are publicly available. Files with processed RNA read count data and sample metadata 
are publicly available from Zenodo (https://zenodo.org/record/3533431 with DOI 10.5281/zenodo.3533431). A key to the RNA sequence data in SRA BioProject 
accession number PRJNA588478 can be found in Supplementary Table 4 as well as in the metadata file available from Zenodo.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Representative studies from the literature were used to determine sample size. These studies are cited in the manuscript.

Data exclusions In the selection analyses, individuals that were severe outliers for the relative abundance of a transcript/trait (± 3 SD) were removed on a per-
transcript/trait basis to satisfy the assumption of normality. This was a pre-established criterion.

Replication All accessions were successfully planted and measured in biological triplicate in both field environments.

Randomization Allocation of individual plants into experimental groups was random, and the planting order of individuals was randomized according to an 
alpha lattice design.

Blinding The investigators were blinded to the genetic identity of individuals in the experiment during sampling, sample processing, and outcome 
assessment.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging


	The strength and pattern of natural selection on gene expression in rice
	Online content
	Fig. 1 The strength and pattern of selection on heritable rice-leaf transcript levels differ across field environments.
	Fig. 2 Gene-expression level, stochasticity, plasticity, tissue specificity and connectivity influence microevolutionary rates of expression change.
	Fig. 3 Transcripts under selection could affect fitness through regulating early growth vigour and flowering time.
	Fig. 4 Selection targets expression patterns in different biological processes in wet and dry conditions.
	Extended Data Fig. 1 Experimental setup.
	Extended Data Fig. 2 Systems genetics of gene expression in the Indica populations in wet and dry field environments.
	Extended Data Fig. 3 Systems genetics of gene expression in the Japonica populations in wet and dry field environments.
	Extended Data Fig. 4 The strength and pattern of selection on Indica rice-leaf transcript levels under drought conditions differ across fitness components.
	Extended Data Fig. 5 Stochastic expression noise and transcript connectivity limit the efficacy of selection on gene expression.
	Extended Data Fig. 6 Distributions of transcript–trait correlations for the three higher-level traits measured in the dry field environment.
	Extended Data Figure 7 Genome-wide association mapping of the genetic architecture of transcripts that covary significantly with fitness in the Indica population under drought conditions.
	Extended Data Fig. 8 Genome-wide association mapping for fitness in the wet and dry field environments.
	Extended Data Table 1 Phenotypic selection gradients, G-matrices and outcomes of selection for transcript levels in wet and dry conditions.
	Extended Data Table 2 Phenotypic selection gradients on transcript levels for flowering success, fecundity and lifetime fitness in dry conditions.




