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Levels of gene expression underpin organismal phenotypes'? but the nature of
selectionthat acts on gene expression and its role in adaptive evolution remain
unknown'? Here we assayed gene expression in rice (Oryza sativa)®, and used
phenotypic selection analysis to estimate the type and strength of selection on the
levels of more than 15,000 transcripts*>. Variation in most transcripts appears (nearly)
neutral or under very weak stabilizing selection in wet paddy conditions (with median
standardized selection differentials near zero), but selection is stronger under
drought conditions. Overall, more transcripts are conditionally neutral (2.83%) than
are antagonistically pleiotropic® (0.04%), and transcripts that display lower levels of
expression and stochastic noise’? and higher levels of plasticity® are under stronger
selection. Selection strength was further weakly negatively associated with levels of
cis-regulation and network connectivity®. Our multivariate analysis suggests that
selection acts on the expression of photosynthesis genes*, but that the efficacy of
selectionis genetically constrained under drought conditions'. Drought selected for
earlier flowering'">and a higher expression of OsMADS18 (0s07g0605200), which
encodes a MADS-box transcription factor and is aknown regulator of early
flowering®>—marking this gene as a drought-escape gene'"'>. The ability to estimate
selection strengths provides insights into how selection can shape molecular traits at

the core of gene action.

Toinvestigate the strength and pattern of selection on gene expression,
we assessed transcriptome variation in two rice populations (Sup-
plementary Tables 1-4)—one consisting of 136 varietal group ‘Indica’
accessions (comprising the indica and circum-aus subgroups) and
the other of 84 varietal group ‘Japonica’ accessions (comprising the
japonicaand circum-basmatisubgroups)—in afield experimentinthe
Philippines®. Replicates of each population, with three individuals per
accession, were planted in a continuously wet paddy and a field that
imposed intermittent drought (Fig. 1a, Extended Data Figs. 1-3). We
used 3’-end mRNA sequencing™ (Methods) to measure mRNA levels
inleaf blades of the 1,320 plants at 50 days after sowing, correspond-
ing to 17 days after withholding water in the dry field. We observed
genetic variation in the levels 0f 15,635 widely expressed transcripts®™
(abroad-sense heritability of about 0.08 to about 0.95, false discovery
rate (FDR)-adjusted g < 0.001) (Fig. 1b, Extended Data Figs. 2, 3, Sup-
plementary Text, Supplementary Tables 5-8 provide overviews of
genetic, environmental and interactive effects).

We focused our analyses on the Indica population, which is the pre-
dominant rice population grown globally®. We applied phenotypic
selection analysis to measure the strength and pattern of selection
on the levels of all 15,635 transcripts*®, using several complementary

approaches. Weinitially measured total (direct and indirect) selection,
and calculated univariate linear (S) and quadratic (C) selection differen-
tials; these differentials estimate directional and stabilizing or disruptive
selection, respectively, on the basis of the relationship between the trait
value (transcript abundance) and fitness**. We considered total lifetime
fitness through two multiplicative fitness components': (i) flowering
success, defined as flowering and producing filled grains before the
end of the season®™? (which was only relevant under drought, owing to
stress-related flowering delay and spikelet sterility)™'%; and (ii) fecundity,
which was quantified as the numbers of filled grains produced (and
which was relevant for both fields)*"'? (Fig. 1a, Extended Data Fig. 1,
Supplementary Tables 2,9, Supplementary Notes 1, 2).

In wet conditions, selection on expression appeared to be weak.
Transcriptome-wide selection strength was S| .cqian = 0.035, with very
few transcripts showing S| > 0.1, which suggests that—for most genes—
variation in expression is (nearly) neutral (Fig. 1c); this is similar to the
distribution of selection strengths for higher-level organismal traits*”.
Directional selection (S) showed an overall bias for stronger and more-
prevalent positive selection (a greater fitness with greater expression)
thanfor negative selection (alower fitness with greater expression) (7,973
versus 7,569 transcripts, with .4, = 0.0361 (for positive selection) and
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Fig.1|The strengthand pattern of selection on heritablerice-leaftranscript
levels differ across field environments. a, The Indica population showed
significant genotype x environment (G x E) variationin fitness as determined
by measuring the multiplicative fitness components, fecundity (magentaand
greeninwetand dry conditions, respectively) and flowering success (zero
filled grainsindicate no flowering success); variationin flowering successis
relevant only under drought conditions. Two-way analysis of variance (ANOVA),
GxEP=4.68x10",n=136accessions.b, Distribution of broad-sense
heritability (H?) for transcripts with significant expression polymorphism.
Two-way ANOVA, genotype FDR-adjusted ¢ <0.001, n=136 accessions.c, The
strength of selection |S| on gene expression when considering total lifetime
fitness differed between wet (magenta) and dry (blue) conditions.

Smedian = —0.0345 (for negative selection), respectively; Mann-Whitney
U-test,z=2.38, P=0.0173). By contrast, C was negative (consistent with
stabilizing selection) for the majority of transcripts (8,070 transcripts
with C< 0 and 7,472 transcripts with C> 0)—although when Cwas posi-
tive, ittended tobe stronger (Mann-Whitney U-test, z=-3.28, P=0.001)
(Fig.1d, e, Supplementary Tables 10, 11). However, none of the transcript
levels covaried significantly with fitness, for either S or C, after Bonfer-
ronicorrection (P<3.2x107°). This suggests that—at microevolutionary
timescales—variation in gene expression is (nearly) neutral or exhibits
very weak stabilizing selection. This contrasts with stronger directional
and stabilizing selection at larger evolutionary timescales'.

Selection was stronger (|S|eqian = 0.1367) under drought conditions
thanunder wet conditions (Mann-Whitney U-test,z=99.99, P<0.0001)
(Fig. 1c). Although no individual transcript breached the Bonferroni
threshold, S and C exhibit more extreme values under drought condi-
tions, indicating drought-induced shiftsin both the strength and pattern
of selection (Kolmogorov-Smirnov test, D=0.327 (for S) and D=0.269
(for C), P<0.0001) (Fig. 1d, e, Extended Data Fig. 4, Supplementary
Text show results for fitness components under drought conditions).
We examined selection on expression across environments and found
patterns of antagonistic pleiotropy (S exhibits opposite directionality
between environments) for 6 transcripts (about 0.04%) and conditional

Mann-Whitney U-test, two-sided P<0.001, n=15,542 transcripts. d, Positive
directional selection (top right, n=7,973 transcripts) was stronger than
negative directional selection (top left, n=7,569 transcripts) inwet conditions
(magenta) (Mann-Whitney U-test, two-sided P=0.017), and selection shifted to
more extreme values under drought conditions (blue) (Kolmogorov-Smirnov
test, two-sided P<0.001,n=15,542 transcripts). e, Patterns of stabilizing

(top left) and disruptive (top right) selection were significantly more extreme
under drought conditions. Kolmogorov-Smirnov test, two-sided P<0.001,
n=15,542transcripts. f, Patterns of conditional neutrality (light grey) and
antagonistic pleiotropy (magenta and blue denote transcripts beneficial in wet
and dry conditions, respectively) for gene expression. Black indicates
transcripts thatexperienced selectioninthe samedirectioninboth fields.

neutrality (significant Sin one environment) for 443 transcripts (2.83%)
(Fig. 1f). Compared to expectations that are based on chance alone,
conditional neutrality appears much more common than antagonis-
tic pleiotropy under our conditions® (Supplementary Table 12). This
resultindicatesagenerallack of trade-offs at the gene-expression level,
and suggests amechanistic explanation for the lack of yield penalty on
drought tolerance in modern rice breeding lines™.

To identify factors that shape rates of microevolutionary change in
gene expression, we performed partial correlation analysis with factors
that influence macroevolutionary rates of expression divergence’®
(Supplementary Table13). We focused on |S| because this valueis directly
proportional to the response to selection®, which is ameasure of micro-
evolution?. Relative expressionlevel and stochastic expression noise were
negatively correlated with |S| (Pearson’s partial r<—0.119, P<5.13 x10™%)
(Fig. 2a, b, Supplementary Table 14), suggesting fitness is buffered—to
some extent—for expression variation in highly expressed genes, as well
asfor high stochasticity in transcript abundance’. However, we observed
that accessions with higher genome-wide levels of expression stochas-
ticity tend to have alower fecundity®** (Spearman’s p < —0.174, P<0.05)
(Fig. 2¢, Extended DataFig. 5, Supplementary Table15). |S| also correlated
positively with tissue specificity 7 (Pearson’s partial r>0.024, P< 0.01)
(Fig.2a,b), and for fecundity with expression plasticity (differential gene
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Fig.2|Gene-expression level, stochasticity, plasticity, tissue specificity and
connectivity influence microevolutionary rates of expression change.

a, b, Partial correlation analyses of factors that negatively (grey) and positively
(mustard) influence selection strength |S| on gene expressioninwet (a) and dry
(b) conditions. Dots indicate statistical significance for Pearson’s partial r
correlations; t-test, P<0.05,n=14,753 transcripts (Supplementary Table 14).

¢, Global expression stochasticity limits fecundity. Spearman’s p=-0.189, t-
test,P=0.036,n=123 accessions.d, Global expression plasticity correlates
with fecundity under drought conditions. Spearman’s p=0.15, t-test, P=0.041,
n=135accessions.e, |S|isbounded by expression connectivity. Kruskal-

Wallis test, two-sided P=0.000017, n=12,502 transcripts. Left, box plot with
centreline =median, cross =mean, box limits =upper and lower quartiles,
whiskers=1.5 xinterquartile range and points = outliers. Right, mean ts.e.m.
f,|S|is limited by regulatory constraints, as assessed through numbers of

expression between the two environments; Pearson’s partial r>0.017,
P<0.05) (Fig. 2a, Extended Data Fig. 5). This is consistent with previous
reports that tissue specificity can minimize pleiotropic constraints on
selection?, and expression plasticity can affect the efficacy of selection’®.
Supportingtheimportance of plasticity, accessions thatinduce expres-
sion of more genes under drought conditions experience fitness benefits
(Spearman’s p=0.15, P=0.041) (Fig. 2d, Supplementary Table 16).
Geneexpressionisregulated through networks of transcription factors
thatinteract with cis-regulatory DNA elements’, and these relationships
have beenshapedby past selection. Highly connected transcriptsinregu-
latory networks should be controlled by more transcription factors®>%
and have evolved toreduce the effects of expression variation onfitness,
contributing to robustness’. Supporting this hypothesis, fitnesswasless
strongly associated with the expression of genes with higher connectivity
(Kruskal-Wallis test, H>18.94, P<0.001), numbers of known cis-regulatory
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cis-regulatory promoter elements (REGs) (n=3,907 transcripts; Mann-
Whitney U-test, P=0.0061) and transcription factors regulating agene (in-
degree) (n=2,905 transcripts; Mann-Whitney U-test, P=0.0061). Left, boxes
and whiskers asine.Right, meants.e.m.g, Linear (8) (coloured) and quadratic
(y) (grey) selection gradients (£s.e.) onsuites of transcripts as principal
components (eigengenes).n=408 plants. S values are for total lifetime fitness
inwet (magenta) and dry (blue) conditions, and for flowering success (lime)
and fecundity (green) under drought conditions. h, Prediction of the outcome
of selection (Az) for PC7,..and PCé,,, ing, indicating that the efficacy of
selectionunder droughtislimited (total change (7) lower than S for total
lifetime fitness) through genetic constraints (indirect or correlated change (/)
and direct change (D) have opposite signs). S values are asing for comparison.
Extended Data Tables 1,2 provide more details. Pvalues are two-sided.

DNA elements and transcriptional regulators (Mann-Whitney U-test,
z>2.74,P<0.05) (Fig. 2e, f, Extended Data Fig. 5, Supplementary Table 17).

Because interactive network effects appear to curb the strength of
phenotypic selection on gene expression, we hypothesize that genetic
correlations between multivariate suites of transcripts may constrain
the outcome of selection. We performed dimensional reduction of the
transcriptome data using principal component (PC) analysis, and consid-
ered the principal components that explain>0.5% of overall variance as
suites of transcripts inamultivariate selection analysis® (Supplementary
Table18). We estimated linear (8) and quadratic (y) selection gradients,
which together measure the strength and pattern of direct (instead of
total) selection on a trait**. Quadratic selection was generally weak,
but PC7 showed significant positive directional selection under wet
conditions (PC7,.8=0.017, P=1.44 x107%). Under drought conditions,
PCé6 displayed positive directional selection for flowering success
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Fig.3|Transcripts under selection could affect fitness throughregulating
early growth vigour and flowering time. a, Wet conditions (magenta) impose
stabilizing selection on flowering time (FT) and positive directional selection
ongrowthvigour (leafarea, Lf) (¢-tests). Droughtinduces strong, positive
flowering-success (z-test) and total-lifetime-fitness selection (t-test) on early
flowering (lime and blue, respectively), and leads to weaker fecundity selection
(green) (t-test) on chlorophyll concentration (Ch), early flowering and early
growth vigour (Supplementary Table 20). Linear (8) and quadratic (y) selection
gradientsare denoted by coloured and grey markers, respectively.
Mean s.e.m.,n=408 plants; asterisks indicate selection-gradient
significance, two-sided, unadjusted P<0.05.b, Two transcripts with significant
linear selection differentials (n =408 plants; z-test, two-sided, Bonferroni-
adjusted P<0.05for15,565 transcripts) for flowering success under drought
conditions (lime) may promote drought escape through regulating early
flowering; absolutized transcript-trait correlations are significant (Pearson’s
|r|>0, t-test, two-sided, unadjusted P< 0.01) (Extended Data Fig. 6). Three of
four transcripts with significant selection differentials (n =408 plants; t-test,
two-sided, Bonferroni-adjusted P< 0.05for 15,343 transcripts) for fecundity
under drought conditions (green) may affect fitness by influencing
photosynthesis and—consequently—early growth vigour; transcript-trait
correlations are significantly positive (Pearson’sr>0, t-test, two-sided,
unadjusted P<0.01) (Extended DataFig. 6, Supplementary Text).

(PC64,,=0.025, P=0.023),and was marginally non-significant for total
lifetime fitness (8=0.032, P=0.07) (Fig. 2g, Extended Data Tables 1, 2).
Furthermore, fecundity selection under drought conditions was posi-
tivefor PC4 (PC4,,, f=0.017, P=0.014), whereas selection for flowering
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Fig.4|Selection targets expression patternsindifferentbiological
processesinwet and dry conditions. Biological processes thatexperience
stronger selection appear to be linked to growth and defence for total lifetime
fitness inwet conditions (magenta). Under drought conditions, biological
processes thatexperience stronger selection areinvolved in growth for total
lifetime fitness (blue), in early growth vigour and flowering for fecundity
(green), and inregulatory processes for flowering success (lime). Only
biological processes with n>20 transcripts and with significantly higher
medianselection strengths || ,cqi.n than the transcriptome-wide median are
shown (nonoverlapping 95% confidence intervals).

success had the opposite effect—albeit marginally non-significant
(8=-0.019,P=0.07) (Fig.2g). We can predict the outcomes of selection
and evolutionary constraints on gene expression using the breeder’s
equation'®. Although the principal components as multivariate suites of
transcripts were uncorrelated at the phenotypic level, they genetically
covaried given that individual plants were accompanied by two addi-
tional genetically identical plants in the population. Despite stronger
selection under drought conditions, evolutionary responses to stress
were weak owing to constraints (as evidenced by the opposite signs of
the direct and indirect responses to selection) that arose from genetic
correlations between gene groups (Fig. 2h, Extended Data Table 1).

Gene expression presumably influences fitness through regulating
phenological, morphological or physiological traits, and we measured
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three of these traits: (i) flowering time, (ii) leaf area and (iii) chlorophyll
concentration (all of which display significant genetic variation) (Fig. 3a,
Supplementary Tables 2,19). We find stabilizing selection for flowering
time and positive directional selection for leaf area in wet conditions.
Drought selected for earlier flowering, and leaf area and chlorophyll
concentration experienced positive fecundity selection (Fig. 3a, Supple-
mentary Table 20). We assessed whether selection on these traits could
havebeen driven by selection on suites of transcripts. In the multivariate
analysis, translation- and photosynthesis-related gene ontology terms
showed loading-value enrichment on principal components with >0
(Supplementary Table 21). Moreover, the levels of several photosyn-
thesis-related transcripts correlated withleaf area, chlorophyll content
and fitness (Fig. 3b, Extended Data Fig. 6, Supplementary Tables 10, 11,
22), indicating their expression may increase fitness through promot-
ing growth vigour™? (Supplementary Text). We also ranked biological
processes by median selectionstrengths |S| from the univariate analyses.
We observed different rankings between dry and wet conditions (Mann-
Whitney U-test, z=-13.51, P< 0.001) (Fig. 4): plants in wet conditions
showed arelatively strong selection on genes related to growth and
defence, whereas under drought conditions plants showed a stronger
selectionassociated withgenesinvolved inwater deprivationresponses,
growth and flowering (Fig. 4, Supplementary Table 23).

Flowering time was the trait under strongest selection in drought
conditions. Interestingly, expression of only asingle gene (OsMADS18)—
which encoded the transcription factor OsMADS18—was both under
selection for flowering success after Bonferroni correction (§=0.77,
P=5.99x10™"),and coming close to significance for total lifetime fitness
(5=0.914, P=3.81 x107°) (Fig. 3b). Increased expression of OsMADSIS
was tightly linked with early flowering (Extended Data Fig. 6), which has
previously been functionally validated®. Furthermore, the genesitsina
major quantitative traitlocus (QTL) for flowering and yield under drought
conditions across O. sativa*?®, and the expression of this gene is also
under relatively strong selection for flowering success under drought
conditions in our Japonica population (Supplementary Table 24), sug-
gesting OsMADS18is animportant drought-escape gene'"',

To examine the genetic architecture of fitness-related genes, we con-
ducted agenome-wide association study that mapped expression QTLs
(eQTLs)for transcripts and expression principal components with signifi-
cantselection differentials or gradients in our Indica populations®, using
179,634 randomly sampled single-nucleotide polymorphisms (SNPs)—or
about 1SNP every 2.2 kb. We observe no significant cis-eQTLs after Bon-
ferroni correction (P<2.78 x107). However, trans-eQTLs appeared for
three of eight transcripts under drought-induced selection (Extended
DataFig.7, Supplementary Tables25-27). Although our sample size limits
mapping power, these findings suggest trans-acting loci have key rolesin
the expression variation of fitness-related genes®. We also mapped fit-
ness component traits, and found no significant QTLs (Supplementary
Tables25-27). Furthermore, taking the top 0.5% of SNPs with the strongest
association with fitness, we observed no enrichment for genes with high
selection differentialsin100-kb regionssurrounding these SNPs (y*=0.088,
P=0.77) (Extended DataFig. 8, Supplementary Table 27). This suggests that,
althoughthere may be strongselection for expressionon particular genes,
fitness continues to behave (as expected) as a polygenic trait?.

Gene expression is a fundamental molecular mechanism that is
essential for trait development. Previous studies have focused on
long-term transcriptome evolution across species">”'%; our approach
using phenotypic selection analysis demonstrates that measuring the
strengthand type of ongoing selection onindividual genes across the
entire genome is possible. However, our study has limitations: we are
measuringselection onasnapshot of leaf gene expression, and it would
be interesting to see whether selection strength varies across tissues
and developmental time points™. If so, then the final effect of gene
expression on adaptation may arise from the integration of expres-
sion over the entire life cycle**. Moreover, examining selection across
more environments relevant for plants may provide further insights
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into how gene expression evolves'>*. Nevertheless, our work opens
up the possibility of dissecting the intrinsic and extrinsic factors that
drive adaptive evolution viaregulated gene expression, providing cru-
cial links between adaptation at the molecular and organismal levels.
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Methods

Representative studies from the literature were used to determine
sample size"***, The investigators were blinded to the genetic identity
ofindividuals in the experiment during sampling, sample processing
and outcome assessment. The planting order of individuals was ran-
domized according to an alpha lattice design.

Plant material

Plants of 220 O. sativa accessions—136 accessions from the Indica
varietal group (including the circum-aus and indica subgroups) and
84 accessions fromtheJaponicavarietal group (including the circum-
basmati, and temperate, sub-tropical and tropical japonica subgroups)
(Supplementary Table 1), consisting of landraces and breeding lines
and two additionally replicated checks (accessions IR64 and Sahod
Ulan1)—were selected for the experiment>%263238 Seeds for all acces-
sions were obtained from the International Rice Genebank Collection
attheInternational Rice Research Institute (IRRI), and from IRRI's Rice
Breeding Platform - Breeding for marginal environments.

Establishment of the field experiment

Thefield experiment was conducted during the 2016 dry season at IRRI
inLos Banios, the Philippines. Two to three grams of seed from each of
the accessions was sown onto a seed bed on 4 January 2016, and at 17
days after sowing (DAS) seedlings were pulled and transplanted into two
different experimental fields. The first, known as UJ (14° 008’ 41.5” N,
121° 015’ 53.8”E), remained flooded as awet paddy field environment.
The second, known as UR and located in a rain-out shelter, (14° 008’
33.3”N,121° 016’ 03.4”E), was maintained flooded until 33 DAS, at which
time irrigation was stopped and the field was drained to initiate the
drought-stress treatment. This dry field was rewatered by flooding
at 53, 64 and 91 DAS to let the plants experience intermittent drought
throughout the remainder of the season.

The experiments were arranged in analphalattice design witheach
accession plantedin3 replicates with 1 plant per hillin single 2-m rows
with 0.2-m x 0.2-m spacing for a total of 1 focal plant (in the fourth
hill) and 9 neighbouring plants per plot. Basal fertilizer was applied
at 30 DAS using complete fertilizer (14-14-14) at the rate of 50 kg ha™
each of N,, P,O; and K,0. Manual weeding was done regularly in both
treatments. Cymbush (11 ha™) and Cartap (0.96 kg ha™) were applied
at37 DAS, and Provado (1.921ha™) was applied at 40 DAS and again at
60 DAS to controlinsect pests in both treatments.

Soil moisture levelsinthe dry field were monitored by recording soil
water potential using nine tensiometers (Soilmoisture Equipment)
installed at a depth of 30 cm in each replicate, and volumetric soil
moisture by frequency domain reflectometry (Diviner 2000, Sentek)
at10-cm depth increments through 70-cm PVC tubes installed at 9
locations in the experimental area.

Leaftissue collection for mRNA sequencing

Leaf sampling was performed at 50 DAS on the focal plant in all plots
ofthe wet and dry fields from10:00 to 12:00 (4 h after dawn) as previ-
ously described®. The aim was to collect leaf samples in the short-
estamount of time possible to minimize the effects of physiological
changes patterned with the circadian rhythm of the plants. Four pairs
oftechnicians were assigned to collect leaves, and the wet and dry fields
were sampled simultaneously by different teams workingin the same
order by replicate and plot.

During collection, two fully expanded leaves were selected for sam-
pling. Approximately 12 cm of leaf length were cut into small pieces
and submerged into 4 ml chilled RNALater solution in 5-ml screw-cap
tubes. Scissors used for leaf sampling were wiped with 70% ethanol to
avoid contamination between plots. The tubes with the collected leaf
samples were placed onice in a styrofoam ice chest, then transferred
toacold roomat -4 °C overnight. A total of 1,320 tubes were used for

thecollectionsinthe wetand dry fields. Leaf samples from each of the
5-ml tubes were then transferred into pairs of 2-ml tubes, then stored
at-80 °C.One 2-mltube of each of the 1,320 pairs was sent to New York
University in liquid -nitrogen dry shippers for long-term storage and
further processing for mRNA sequencing.

Higher-level trait measurements

A set of physiological, morphological and phenological measure-
ments was conducted to assessindividualand genotypic differencesin
droughtresponse. Inboth the wet and dry fields, ground coverimages
were taken from each focal plant at 52 DAS using a high-resolution
digital camera at the same height from the ground. Images were pro-
cessed and analysed using Image]J software version 1.52 to determine
the leaf area (leaf area index or per cent groundcover)®. For images
in which other green material was present, GNU Image Manipulation
Program (GIMP) software version 2.10.0 was used to select the leaves
of the designated plant to determine the leaf area index (www.gimp.
org). Chlorophyll concentration (chlorophyll contentindex) (Apogee
Instruments) was measured on one leaf of each focal plantat 49 DAS in
thedryfield, and 50 DAS inthe wet field. Flowering time was recorded as
the day on which 50% of plantsin a plot flowered; these plantsincluded
the focal plant and the nine neighbouring plants.

Grain harvesting and processing

Toavoid grainloss fromshattering, individual panicles were harvested
separately from the focal plantin each plot as they reached maturity,
foratotal of1,320 plants harvested individually. Filled, partially filled
and unfilled grains were sorted and counted with the use of a seed
counter (Hoffman Manufacturing) except for seeds with awns, which
were counted manually.

Preparation of RNA for library construction

Frozen leaf samples were thawed at room temperature and blotted
briefly on a KimWipe for removal of excess RNALater. The leaf tissue
was then flash-frozenin liquid nitrogen and pulverized in liquid nitro-
genwithapre-cooled mortar and pestle (CoorsTek), and frozen again
at —80 °C. Total RNA was extracted from the pulverized bulk tissue
using the RNeasy Plant Mini Kit according to manufacturer’s protocol
(Qiagen). The RNA was quantified on a Qubit (Invitrogen), after which
the quality of the RNA was assessed on an Agilent BioAnalyzer (Agi-
lent Technologies). The total RNA preps were then stored at -80 °Ciin
nuclease-free water.

RNA-sequencing library construction and sequencing

Total RNA for each sample was processed individually according to a
barcoded, plate-based 3’-end mRNA sequencing (3’ mRNA-seq) pro-
tocol that presents a modification of the SMART-seq2 and SCRB-seq
protocols*® 2 In brief, aliquots of total RNA from all samples were
transferred individually into wells in 96-well-plates, and diluted to a
concentration of 10 ng in a total of 50 pl nuclease-free water. Then,
the total RNA was mixed with 5 x Maxima reverse transcription buffer,
dNTP mixture, RNase inhibitors (NxGen RNase Inhibitor, Lucigen, at
40 pg pl™) and water. We reverse-transcribed the mRNAs using Super-
script Il Reverse Transcriptase (Thermo Fisher Scientific), and ampli-
fied cDNAs for each sample in individual wells using the Smart-seq2
protocol*, with a custom modification in which a 12-bp well barcode
wasincludedinthe 3’ end reverse transcriptase primer using barcoded
oligonucleotides from the SCRB-seq protocol*. This enabled us to
perform multiplexed pooling of 96 samples before library prepara-
tion with the Nextera XT DNA sample prep kit (Illumina) and returned
3’-biased cDNA fragments, similar to the Drop-seq protocol*. Each
library consisted of a pool of 96 sister samples—that is, 48 samples
from the wet field environment were matched with samples from the
same plot numbersinthe dry field environment. We quantified the 14
cDNAlibraries on an Agilent BioAnalyzer and sequenced themat 2 x 50
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bases on the Illumina NextSeq 500 using the following settings: read
1was 20 bp (bases 1-12, well barcode; bases 13-20, unique molecular
identifier (UMI)), and read 2 (paired end) was 50 bp.

RNA-sequencing data processing

The 3’ mRNA-seqread datawere quantified according to the McCarroll
Laboratory Drop-seq Cookbook using Drop-seq tools version 1.12
(J. Nemesh and A. Wysoker, https://github.com/broadinstitute/
Drop-seq/releases), a wrapper for aligning and parsing both reads
and their embedded barcodes with the STAR aligner version 020201.
The reference genome used by STAR was Nipponbare IRGSP 1.0
(GCF_001433935.1) including plastids. A reference annotation was
generated from Ensembl’s IRGSP nuclear O. sativa genome annota-
tion (1.0.37) (ftp://ftp.ensemblgenomes.org/pub/plants/release-37/
gff3/oryza_sativa) and supplemented with the Refseq Mitochondrial
and Chloroplast annotations (ftp:/ftp.ncbi.nlm.nih.gov/genomes/all/
GCF/001/433/935/GCF_001433935.1_ IRGSP-1.0). Metadata were gener-
ated with Picard tools version 2.9.0 (https://broadinstitute.github.
io/picard/) and Drop-seq tools. The genome and annotations were
indexed using STAR (genomeGenerate with options --runThreadN
12 --genomeDir inc_plastids --genomeFastaFiles Oryza_sat_CpMt.fa
--sjdbGTFfile1.0.37_all.gtf --sjdbOverhang 49). Where necessary, anno-
tations were converted between RAP-DB and MSU-7 identities using
the Rice Annotation Project’s conversion table (RAP-MSU_2017-04-14.
txt, latest versionis at https://rapdb.dna.affrc.go.jp/download/irgspl.
html). For quantification, raw reads were first converted from FASTQ
to unaligned BAM format using Picard tools FastqToSam and subse-
quently processed using the unified script (Drop-seq_alignment.sh)
in essentially default mode for a FASTQ starting format. Digital gene-
expression profiles were then generated with the DigitalExpression
utility, with the expected number of barcodes (indicative of individual
samples rather than droplets in our case) set to 96. For quality assur-
ance purposes, the digital gene-expression profiles were output both
as UMl count and raw read count matrices with transcripts as rows and
samples as columns. The values represent the number of raw reads or
UMIs that were detected.

To distinguish sample barcodes arising from beads exposed to
total RNA from an individual rice plant, rather than those that cor-
responded to beads never exposed to RNA, we ordered each of the
UMl digital gene-expression matrices from our first13 libraries by the
total number of transcribed elements per barcode, and plotted each
barcode in the matrix by the number of transcribed elements from
highest to lowest number. As previously described™, Drop-seq-type
data always display a ‘knee’ at a sample barcode number that is equal
to or just under the known number of samples included. All sample
barcodes with anumber of transcribed elements that was larger than
this cutoffwere used indownstream analyses, and the remaining sample
barcodes were discarded. Samples with RNA-seq data that had to be
discarded were replaced by extracting RNA from a back-up sample,
and these replacement samples were included in the remaining slots
of our fourteenth library.

Data normalization

The aim of normalization is to make expression levels comparable
between samples by removing the effect of sequencing depth, and
technical sources of heterogeneity (in our case the processing of sam-
plesindifferentlibraries) that may confound the signal of interest. To
account for differences in the total number of molecules sequenced
per library, we normalized UMI counts from each sample by dividing
by the total number of UMIs detected in that sample. These numbers
were multiplied by 1x 10° to obtain transcripts per million. This scal-
ing factor largely represents a consistent increase or decrease across
all positive values in our dataset. We then merged the 14 pruned digi-
tal gene-expression matrices into one super-matrix that contained
transcripts-per-million expression datafor all 1,320 samples after the

low-quality samples had been removed. After this, very lowly tran-
scribed elements (transcript models with a sigma signal < 20) were
filtered out, and a relatively strong normalization was applied to the
remaining elementsin the matrix through invariant set normalization
using the DChip utility version 2010.01* (Wong Laboratory, https://
sites.google.com/site/dchipsoft/). These steps ensured that rarely
encountered elements were filtered out and that confounding technical
effects wereremoved. Alldownstream calculations were performedin
log-space, using normalized levels (log,(normalized transcripts-per-
million value + 1)) of transcribed elements that were obtained using
the R (version 3.4.3) package edgeR version 3.14***, To make sure we
did not consider transcripts that arerelevant only for accessionsinthe
temperate japonica subgroup of which Nipponbare is a representa-
tive*®, we kept only transcripts from protein-coding genes on nuclear
chromosomes that were detected in at least 10% of individuals across
our populations for all subsequent analyses.

Quantitative genetics of gene expression

Expression measures were then processed by ANOVA to partition phe-
notypic variation. For each gene-expression trait, we fit amixed-effect
general linear model, including a term for accession or genotype (G)
as arandom factor, field environment (£) as a fixed factor, the G x F
interaction as arandom factor and the error variance (g). The signifi-
cance of the variance explained by each of the factors was tested using
an F-test. In these analyses, we controlled for multiple testing using a
FDR-adjusted g value of 0.001*. Statistical analyses were carried out
using the Ime4 package version 1.1in R**, and were performed sepa-
rately for the IndicaandJaponica populations to control for the major
source of populationstructurein O. sativa. We estimated broad-sense
heritabilities as H2=0.5x 6°3/(0.5 X 6% + (0.5 x 0’ ;,/€) + (0°/re)), inwhich
0%, 0%crand o*; are the among-genotype, G x E and within-genotype
variance components (respectively), eis the number of environments
and ris the number of replicates per environment. Because the pre-
dominant reproductive mode of O. sativa is selfing, we applied the
factor 0.5 to adjust for the twofold overestimation of additive genetic
variance among inbred accessions®. We estimated cross-environment
genetic correlations as ry, = cov;/0,0;, in which cov; is the covariance
of accession means between a trait asiin the wet andjin the dry field
environments, and 0;and g;are the square roots of the among-genotype
variance components for the traitin the wet and dry field environments.

Gene set enrichment analysis on differentially expressed
transcripts

We performed gene set enrichment analysis (GSEA) to obtain addi-
tional biological insight into the transcripts with a significant field-envi-
ronmental bias (significant E term and log,-transformed fold change
of >1.5) intheir abundance using the PlantGSEA analysis pipeline ver-
sion1at default settings*®.

Univariate phenotypic selection analyses
We measured the strength of selection on gene expression separately
forthe O.sativalndicaand]aponica populationsin each of thetwofield
environments. We used univariate regression to estimate the covari-
ance between the expression level of each transcript individually and
total lifetime fitness across the populations in the wet and dry fields,
as well as the multiplicative fitness components flowering success
and fecundity for the populations under drought conditions*>**°, To
prepare data for univariate selection analysis for total lifetime fitness
in the wet field, we removed individuals with zero fecundity fitness
(nofilled grains produced) from the analysis (59 for Indica and 33 for
Japonica), because these presented too few individuals for a selection
analysis on flowering success—leaving fecundity fitness as a proxy for
total lifetime fitness.

For selection analyses for fecundity fitness, the filled grain number
for eachindividual plant was normalized by dividing by the mean filled
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grainnumber of the population after filtering out individuals with zero
fecundity fitness in the previous step: w’ = w,/mean(w). After this, the
abundance values of each transcript across individuals expressing
that transcript were standardized by subtracting the population mean
abundance of the transcript and dividing by the s.d. of the abundance
ofthat transcript over the population: z= (x;— mean(x))/s.d.(x). Finally,
individuals that were severe outliers for the relative abundance of a
transcript (+3s.d.) wereremoved on a per-transcript basis to satisfy the
assumption of normality for the selection analyses. Only transcripts
that were expressedinatleast20 individualsinapopulation were used
for analysis using a custom script in Python version 2.7 (Supplemen-
tary Note1l).

We performed separate analyses to estimate the strength and direc-
tion of selection on gene expression for the fitness component flow-
ering success using univariate logistic regression for each individual
transcript (expressed in > 20 individuals) across all individuals in the
populationsinthedry field environment®, again using a custom Python
script (Supplementary Note 2). Flowering success was defined as a
binary state in which individuals were given a value of 1if they were
able to produce at least one filled grain before the end of the grow-
ing season, and O if not. Because, in our study, flowering success and
fecundity are multiplicative fitness components', we added up the
selection differentials and error estimates for these fitness components
under drought conditions to establish selection differentials and error
estimates for total lifetime fitness in dry conditions™.

Boththelinear and logistic regression analyses output standardized
directional-selection differentials (S=cov[w, z]), and disruptive- or bal-
ancing-selection differentials (C=cov[w, (z—- mean(z) (z— mean(2))")])
that reflect the total (direct and indirect) selection on the expression
level of a gene*>.

Multivariate phenotypicselection analyses

For each population, we performed separate dimensional reductions
onthetranscriptome datasets per field environment through principal
component analysis (PCA) using the prcomp function in R**?, and
conducted multivariate selection analyses for total lifetime fitness in
the wet and dry environments, and for flowering success and fecundity
in the dry environment>*-., We calculated both the linear selection
gradients, (8=P"S), and quadratic selection gradients, (y=P*CP?),in
which Prepresents the phenotypic variance-covariance matrix of the
transcript abundances included as traits®. Selection gradients for total
lifetime fitness under drought conditions were obtained in the same
way as described in ‘Univariate phenotypic selection analyses’. The
selection gradients reflect the strength and direction of direct selec-
tion on a trait. In addition to determining the pattern and strength of
selectionongene expression, we also estimated selection differentials
and gradients for the three higher-level traits we measured: chlorophyll
concentration, flowering time and leaf area.

Factors affecting the strength of selection on gene expression
We performed a series of analyses to assess whether there are fac-
tors that might be linked to the heterogeneity of selection strengths
between different transcripts. For the Indica population, the covariates
of expression level, stochastic noise and polymorphism were directly
derived from the transcript expression super-matrix with expression
level defined as the grand mean expression level of atranscriptineach
field environment, expression noise defined as the average variancein
the abundance of atranscript betweenindividual replicates of all acces-
sions and expression polymorphism as the population-wide variance
between accession mean expression levels. Transcript H*and ry,, were
calculated as described in ‘Quantitative genetics of gene expression’.
For nearly all transcripts, information on their length and GC con-
tent could be downloaded from the Ensembl Plants BioMart release
43 (https://plants.ensembl.org/biomart/martview) O. sativa)aponica
IRGSP-1.0 dataset. In addition, we obtained tissue-specific expression

datafor 29,122 genesin 9 tissues from the EMBL-EBI Expression Atlas,
experiment E-MTAB-2039 (https://www.ebi.ac.uk/gxa/experiments/
E-MTAB-2039/Results), originally generated in a previous publication®.
From these data, the tissue specificity index value for each gene was
calculated:

Yii(1-x)
n-1

in which nis the number of tissues and x; is the normalized expres-
sion profile component®. For each of the covariates described thus
far, information was available for the vast majority of all transcripts
(n=14,753 transcripts or 94.4%) that were included in our phenotypic
selection analyses.

The nine covariates did not have irregular distributions and were
includedina partial correlation analysis (n = 14,753 transcripts) using
theR package corpcor version 1.6.9*5, We started by calculating para-
metric Pearson product-moment correlations between pairs of all vari-
ablesforeach field environment by selection component combination,
after which we estimated the partial correlations by establishing the
pseudo-inverse of the resulting correlation matrices™®.

Relation between fitness and global gene-expression
stochasticity and plasticity

We computed mean values for fecundity across replicates for each
accessionthatwereincludedinthe phenotypicselection analyses, and
correlated these fitness values with genome-wide (global) measures
of gene-expression stochasticity and plasticity (the latter only for the
dryfield environment). To obtain estimates of global gene expression
plasticity, we performed targeted ANOVA for each accessionindividu-
ally by fitting a fixed-effect general linear model, including a term for
field environment (£) as a fixed factor, and the error variance (¢). The
significance of the variance explained by the environment factor was
tested using an F-test. The number of significant drought-induced
transcripts at FDR-adjusted g < 0.05 for an accession was taken as a
proxy for global gene-expression plasticity for that accession®.

To obtain estimates of global gene-expression stochasticity for acces-
sions in each field environment, we averaged the variance across the
three replicate individuals of an accession for all transcripts as previ-
ously described®, after we calculated the level of stochastic noise for
each transcript within an accession as 0*/u?, variance divided by the
mean squared, known as CV? (the squared coefficient of variation)*.
Our measure of expression stochasticity is corrected by including
expression level as a covariate in the analysis, just as it was in the
partial correlation analysis. The relation between fitness and global
gene-expression plasticity and stochasticity was obtained through
computing nonparametric Spearman’s rank correlation coefficients.

Network effects on the strength of selection on gene expression
We performed separate analyses on four independent measures of
network effects on the strength of selection on gene expression. We
obtained measures of within-cluster connectivity from 53 clusters
0f'17,931 co-expressed transcripts that were previously derived from
transcriptome data of 240 samples®. These samples were taken in time
series from Indica and Japonica accessions growing in wet (irrigated,
flooded paddy) and dry (rain-fed) field environments across adry and
awet season, inthe same geographical location as our experiment.
The number of cis-regulatory element groupsinthe promoter regions
(from -1kb to +200 bp relative to the transcription start site) of 3,907
genes that overlapped with genes in our analysis were obtained from
the Plant Promoter Database (PPDB) version 3.0%, which we accessed
at http://ppdb.agr.gifu-u.ac.jp/ppdb/cgi-bin/index.cgi. Only those
cis-regulatory element groups that correspond to known cis-elements
were included®. The median number of cis-regulatory element groups
per promoter was 5, and we tested whether the expression of genes
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withupto5cis-regulatory element groupsintheir promoter (n=2,141
transcripts) experienced stronger selection than the expression of
genes with 6 or more cis-regulatory element groupsin their promoter
(n=1,766 transcripts) by performing a Mann-Whitney U-test.

Thenumber of transcription factors predicted to regulate the abun-
dance of each transcriptina network context (that is, the ‘in-degree’ of
each gene) was obtained from 2,905 transcripts in previously created
environmental gene regulatory influence networks® that overlapped
with transcripts in our analysis. The environmental gene regulatory
influence networks were built through combining prior knowledge
on experimentally validated or inferred transcription-factor binding
preferences®, with rice gene-expression and chromatin-accessibility
datafrom plantsgrowninwet and dry conditions®?, We tested whether
the level of transcripts predicted to be regulated by one transcrip-
tion factor (n=1,505) experienced stronger selection than the level of
transcripts predicted to be regulated by more than one transcription
factor (n=1,400) by performing a Mann-Whitney U-test.

GSEA on transcripts under selection

We performed GSEA to obtain additional biological insight into the
transcripts in the 5% tails of the distributions of transcripts’ loading
values on principal components with significant selection gradients,
and of the Pvalue distributions of the transcripts’ selection differentials
for total lifetime fitness in wet and dry conditions, and for fecundity
and flowering success under drought conditions using the PlantGSEA
analysis pipeline version 1at default settings*s.

Ranking Gene Ontology biological processes by selection
strength

Gene Ontology term annotations were downloaded from Monocots
PLAZA 4.0°%, We obtained biological-process Gene Ontology anno-
tations for 11,901 transcripts that overlapped with transcripts in our
analyses. To minimize redundancy among Gene Ontology terms, we
focused our analysis onbiological-process Gene Ontology terms that
were represented in the annotations of at least 20 transcripts in our
dataset. This resulted in the inclusion of 6,161 transcripts with Gene
Ontology biological-process term annotations in our analysis.

We used the median selection strength |S| of all transcripts anno-
tated to be involved in a particular biological process as a proxy for
theselection strength |S|onthat process. By setting the minimum size
per term as at least 20 transcripts and by considering the median S|
for each Gene Ontology term, we not only limited redundancy but
also avoided estimates of selection strength per Gene Ontology term
being influenced by small group sizes. We tested for rank shifts in the
order of biological processes by their median |S| between field environ-
ments for total lifetime fitness through conducting Mann-Whitney
U-tests (n=243 biological processes per group). Furthermore, per field
environment by fitness component combination, we considered any
biological process to be under significantly stronger selection than the
transcriptome-wide median (n=6,161transcripts) ifthe median selec-
tionstrength for aprocess was removed from the transcriptome-wide
median selection strength by at least the 95% confidence interval for
the selection strength of that process.

Transcript associations with higher-level traits

We identified transcripts significantly associated (P < 0.01) with the
three higher-level organismal traits we measured (chlorophyll concen-
tration, flowering time and leaf area) for the Indica populationin each
field environment by using regression models: Y=pu + T +¢,in which Y
represents the higher-level trait of interest, g anintercept parameter,
T denotes the transcript covariate and € residual error.

Selection of DNA sequence read data
Raw FASTQ reads from 27 accessions included in the 3K-RG project
were downloaded from the Sequence Read Archive (SRA) website

under BioProject PRIEB6180°. For a further 188 accessions, raw FASTQ
reads were downloaded from SRA BioProject accession numbers
PRJNA422249 and PRJNA557122%*. DNA sequence data were available
for 215 out of 220 accessions; one accession was a ‘filler’accession and
its genome was not resequenced, and a further four accessions were
replicated checks of two accessions, IR64 and Sahod Ulan 1. Acces-
sion numbers and origins of tissue for DNA extraction can be found in
Supplementary Table 1. Overall, atotal 0f1,203,564,772,205 bp (about
1.2 Tbp) were included for downstream analyses.

Reference-genome-based DNA read alignment

FASTQreads were preprocessed using the bbduk program of BBTools
version 37.66 (https://jgi.doe.gov/data-and-tools/bbtools/) for read
quality control and adaptor trimming. For bbduk, we used the options:
minlen =25 qtrim =rl trimq =10 ktrim =r k=25 mink =11 hdist =1 tpe
tbo. This trimmed reads below a phred score of 10 on both sides of
the reads to aminimum length of 25 bp, trimmed 3’ adapters using a
k-mer size of 25 as well as a k-mer size of 11 for ends of reads, allowed
one Hamming distance mismatch, trimmed adapters based on over-
lapping regions of the paired-end reads, and trimmed reads to equal
lengthsif one of them was adaptor-trimmed. FASTQ reads were aligned
tothereference O. sativa Nipponbare IRGSP 1.0 genome downloaded
from EnsemblPlants release 37 (ftp://ftp.ensemblgenomes.org/pub/
plants/). Read alignment was done using the program bwa-mem version
0.7.16a-r1181%*. Only the 12 pseudomolecules were used as a reference,
and the unassembled scaffolds were left out. PCR duplicates during
the library preparation step were determined computationally and
removed using the Picard tools version 2.9.0.

SNP calling

For eachaccession, genotype calling for each site was conducted using
the GATK HaplotypeCaller engine version 3.8-0-ge9d806836 in the
-ERC GVCF mode to output files in the genomic variant call format
(gVCF). The gVCF files from each accession were merged together
to conduct multi-accession joint genotyping using the GATK Geno-
typeGVCFs engine. Genotypes were divided into SNP or insertion and
deletion (indel) variants and filtered using the GATK bestpractice hard
filter pipeline®*. For SNP variants we excluded regions that overlapped
repetitive regions and variants that were within S5bp of anindel variant.
We then used vcftools version 0.1.15 to select SNPs that had at least
80% of sites with a genotype call, and exclude SNPs with minor allele
frequency <5% to remove potential false-positive SNP calls arising from
sequencing errors or false genotype calls®®. Because domesticated
riceis aninbreeding species, we also implemented a heterozygosity
filter for sites that had a heterozygous genotype in more than 5% of the
samples using the program vcffilterjdk.jar from the jvarkit suite version
1 (https://figshare.com/articles/JVarkit_java_based_utilities_for_Bio-
informatics/1425030). Missing genotypes were imputed and phased
using Beagle version 4.1°°. Finally, we randomly pruned the SNPs by
sampling a polymorphic site every 1,000 bp using plink version 1.99,
leaving a SNP dataset 0f 179,634 markers.

G-matrix estimation and prediction of short-term phenotypic
evolution

A G-matrix consists of the additive genetic variances and covari-
ances of a series of traits, and we assembled one for the principal
component axes as eigengenes or reflections of suites of transcripts
inour transcriptome data acrossrice individuals. Although the prin-
cipal components are—by definition—uncorrelated at the level of
the individual replicate plants at which we generated them, they
start showing genetic covariances when loading values of replicates
of each genotype are averaged. Estimates of additive genetic vari-
ance and covariance were obtained using a previously described
approach®, First, we constructed a kinship matrix from the SNP data-
set using the VanRaden method in the R package GAPIT version 3,
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agenome associationand prediction integrated tool**’°. We let GAPIT
estimate the contribution of structure between accessions to each
trait (principal component) using a variance component model,
providing us with the fraction of phenotypic variance explained
by the kinship matrix. This fraction (termed pseudo-heritability)
resembles the narrow-sense heritability estimated from a pedigree,
and serves as an estimate of the additive genetic variance of a trait”.
We then applied abivariate genetic model as previously outlined®® to
obtain estimates of the additive genetic covariance between traits
and principal components.

We used the G-matrix to predict the outcome of selection on gene
expressionacrossone generation (Az), and assess whether evolution-
ary constraints were present, by combining it with the linear selection
gradients on the principal components in the multivariate breeder’s
equation: Az=Gp.

Genome-wide association study

We conducted genome-wide association mapping in GAPIT by apply-
ing a multi-locus linear mixed model, amodel based on EMMA that
uses forward-backward stepwise linear mixed-model regression to
estimate variance components’>”, Weincluded population structure
cofactors as well as the kinship matrix described in ‘G-matrix estima-
tion and prediction of short-term phenotypic evolution’ as arandom
factorinthe model. Structurein our Indica population of 131 different
genotypeswasinferred withaPCA, and GAPIT used the first four prin-
cipal components as cofactors (Supplementary Table 26). Significant
SNPswereidentified using a conservative Bonferronithreshold, which
was at P<2.78 x107. Finally, we selected the top approximately 0.5%
SNPs (1,000 SNPs) based on Pvalue for association with total lifetime
fitness in each environment”, with the aim of testing whether the
100-kbp windows surrounding these SNPs were enriched for transcripts
classed as showing non-neutral microevolutionary selection patterns
(selection strength S| P<0.05). The window size was chosen as arange
of 50 kbp at either side of a SNP, which is conservative given an esti-
mated breakdown of linkage disequilibrium in a range of 75-125 kbp
in O. sativa subgroup indica®7¢ 78,

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Raw FASTQ reads for 188 accessions with resequenced genomes were
downloaded from the SRA under SRA BioProject accession numbers
PRJNA422249 and PRJNA557122. Raw FASTQreads for afurther 27 acces-
sions included in the 3K-RG project were downloaded from the SRA
under BioProject accession number PRJEB6180. RNA sequence data
that support the findings of this study have been deposited under SRA
BioProject accession number PRJNA588478. Processed RNA expres-
sion count data have been deposited in Zenodo (https://zenodo.org/
record/3533431with DOI10.5281/zenodo0.3533431), alongside asample
metadata file with a key to the RNA sequence data in SRA BioProject
accession number PRJNA588478. This key can also be found in Supple-
mentary Table 4. Source Data for Figs.1-4 and Extended Data Figs.1-8
are provided with the paper.

Code availability

Selection analyses were run using custom-made scriptsin Python ver-
sion2.7, whichareavailablein SupplementaryNotes1, 2,and on GitHub
inrepositoriesicalic/Linear-regression-analysis (https://github.com/
icalic/Linear-regression-analysis.git) and icalic/Logistic-regression-
analysis (https://github.com/icalic/Logistic-regression-analysis.git).
Forall other analyses we used previously developed, publicly available

software and code: leaf area was assessed using ImageJ v.1.52 and GIMP
v.2.10.0; RNA-seq data were processed and analysed using Drop-seq
toolsv.1.12, STAR aligner v.020201, Picard tools v.2.9.0, DChip v.2010.01
andRv.3.4.3 packages edgeR v.3.14 and Ime4 v.1.1; gene-set enrichment
analyses were performed using PlantGSEA v.1; statistical analyses were
performedin Rv.3.4.3, further using packages Ime4 v.1.1and corpcor
v.1.6.9; and genome analyses were performed using bbduk v.37.66,
bwa-mem v.0.7.16a-r1181, the GATK GenotypeGVCFs engine v.3.8-0-
£e9d806836, vcftoolsv.0.1.15, jvarkit suite v.1, Beagle v.4.1, plink v.1.9
and GAPIT v.3.
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Extended DataFig.1| Experimental setup. a, Geographical origins of

220 O.sativa accessions, of which 4 constitute additionally replicated checks
(Supplementary Table 1). Seven accessions that are not from Eurasia or Africa
arenotshown. Varietal group (vg.) Indica accessions areindicated inindigo and
vg.Japonicaaccessionsareindicatedinjade. Map data ©2019 Google.

b, Populations of IndicaandJaponicaaccessions (plantedin triplicate
alongside one another) were monitored for total lifetime fitness in wet
(magenta) and dry (blue) fields. Both fields had identical layouts. Numbers
reflectIndica populations with3 x136 accessions =408 individuals planted in
eachfield; Extended Data Fig. 3 shows Japonica populations. Under drought
conditions, both multiplicative fitness components (flowering success (lime)
and fecundity (green)) were relevant (multiplying to total lifetime fitness), but
inwet conditions only the latter was relevant (fecundity equating to total
lifetime fitness, magenta). ¢, Drought exerts truncating selection on the

populations (declining and shifting blue versus magenta bar), and end-of-
seasonwasreached earlier under drought conditions. d, Cumulative rainfall
shows one major rainfall event that caused the rainout shelter over the dry field
to close temporarily after the start of the drought treatment and the sampling
ofleaftissue for RNA sequencing (>51DAS). e, During the period of flowering
(>51DAS), there was anincreasing deficit in soil water potential. f, g, Patterns of
volumetric soil moisture and vapour pressure deficit (VPD) were consistent
with the pattern of soil water potential. Lighter shades of grey in findicate
deeper layers of soil. Grey and mustard lines ingindicate the VPD in the wet and
dryfield, respectively. h, Day lengthincreased over the course of the
experiment. i, Air temperature generally increased over the course of the
experiment (grey and mustard lines indicate the wet and dry field,
respectively).
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Extended DataFig.2|Systems genetics of gene expressioninthe Indica
populationsinwet and dry field environments. a, Environmental bias for
transcript expression. Magentaand blue dots represent transcripts showinga
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respectively. ANOVA, Indicaenvironment FDR-adjusted ¢ <0.001,
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variance. ANOVA, Indica genotype x environment FDR-adjusted g <0.001,
n=136accessions.
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respectively. ANOVA, Japonica environment FDR-adjusted ¢<0.01,
n=84accessions. ¢, Distribution of broad-sense heritabilities (H?) for
transcripts with significant expression polymorphism. ANOVA, Japonica
genotype FDR-adjusted ¢<0.01,n=84 accessions.d, Distribution of cross-
environmentgenetic correlations (ry,) for transcripts showing significant
(blue) genotype x environment (G x E£) variance. ANOVA, Japonica
genotype x environment FDR-adjusted g<0.01,n=84 accessions.
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values (Kolmogorov-Smirnov test, two-sided P<0.001, n=15,343). ¢, Patterns
of quadratic selection differed significantly for the two fitness components.
Kolmogorov-Smirnov test, two-sided P<0.001,n=15,343.d, Patterns of
conditional neutrality (light grey) and antagonistic pleiotropy (lime and green
for transcripts beneficial for flowering success and fecundity, respectively) for
gene expressionunder drought conditions. Black indicates transcripts that
experienced selectionin the same direction for both fitness components.
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Extended DataFig. 5|See next page for caption.




Extended DataFig. 5|Stochastic expression noise and transcript
connectivity limit the efficacy of selection on gene expression. a, b, Partial
correlation analyses of factors that negatively (grey) and positively (mustard)
influence the strength of selection |S| on gene expression for flowering success
(a) and fecundity (b) fitness indry conditions. Dots indicate statistical
significance of Pearson’s partial r (t-test, two-sided P< 0.05, n=14,753)
(Supplementary Table 14). ¢, Global expression stochasticity limits fecundity
under drought conditions. Spearman’s p=-0.174, t-test, two-sided P=0.042,
n=136accessions.d, Asin wet conditions, |S|is bounded by expression
connectivity under drought conditions. Kruskal-Wallis test, P=0.0008,

n=12,502transcripts. Left, box plot with centre line = median, cross =mean,
box limits =upper and lower quartiles, whiskers=1.5 x interquartile range,
points =outliers. Right, mean ts.e.m. e, Indry as well asin wet conditions, |S|is
limited by gene regulatory constraints as assessed through the number of
cis-regulatory elementsin the promoter (n=3,907 transcripts, Mann-Whitney
U-test, two-sided P=0.000015), and the number of transcription factors
regulatingagene (n=2,905 transcripts, Mann-Whitney U-test, two-sided
P=0.0027)illustrated for selection for total lifetime fitness under drought.
Left, boxes and whiskersasind.Right, meants.e.m.



Article

a Leaf area b Chlorophyll conc. Cc Flowering time

§]

2 1 1 1

o

8 0S02G0152400 0S11G0209000 OsMADS18

g 0S03G0592500 0S04G0191500

S 0S04G0482900

IS 0S11G0707100

£ 0.5 0.5 0.5

o

Q

o

—

o

()

=

=]

o

=]

g 0. 0L 0l

S 0 0.1 0.2 0.3 0 0.1 0.2 0.3 0 0.1 0.2 0.3

Transcript-trait correlation Transcript-trait correlation Transcript-trait correlation

Extended DataFig. 6 | Distributions of transcript-trait correlations for the thatshows asignificant quadratic selection differential for fecundity under
three higher-level traits measuredin the dry field environment. a, Absolute drought conditions, and asignificant correlation with chlorophyll
Pearson’s correlations |r| of transcripts with leaf area (green). concentration (Supplementary Text). c, Absolute Pearson’s correlations |r| of
n=15,635transcripts. The cloud delineates transcripts (listed) that show transcripts with flowering time (lime). n=15,635 transcripts. The cloud
significant linear or quadratic selection differentials for fecundity under delineates transcripts (listed) that show significantlinear selection
drought conditions, and significant correlations with leaf area (Supplementary  differentials for flowering success under drought conditions, and significant
Text). b, Absolute Pearson’s correlations |r| of transcripts with chlorophyll correlations with early flowering (Supplementary Text).

concentration (green).n=15,635transcripts. The cloud delineatesatranscript
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Extended DataFigure 7| Genome-wide association mapping of the genetic for analysis; the three principal components, plus a fourth, were included as
architecture of transcripts that covary significantly with fitnessin the cofactorsinthe multi-locus linear mixed model. b, Distribution of expected
Indicapopulation under drought conditions. Three out of eight transcripts versus observed Pvalues forassociations between SNP markers and
are partially controlled by trans-eQTLs (illustrated for expression of the 0s11g0209000 expressionina Q-Qplot. n=131genotypes; multi-locus linear
glycine-rich family protein-coding gene Os11g0209000 under drought mixed model, two-sided, Bonferroni-adjusted P< 0.05for 179,634 SNP markers.
conditions). Supplementary Table 27 providesresults for other transcriptsand ¢, The Manhattan plotindicates two significant trans-eQTL peaks for
for expression principal components or eigengenes as suites of transcripts. expression of 0s11g0209000 (gene locationindicated with vertical red bar).

a,PCA 0f179,634 SNP markers from the Indica population that were selected Only the top approximately 5% of SNPs (10,000 SNPs) are shown.
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Extended DataFig. 8 | Genome-wide association mapping for fitness in the
wet and dry field environments. Taking the top approximately 0.5% of SNPs
(1,000 SNPs) with the strongest association to total lifetime fitness in the wet
(magenta) and dry (blue) field conditions after genome-wide association
mapping, we observed no enrichment for transcripts (n=809 and
142transcriptsinthe wet and dry fields, respectively) that were expressed in
theleaves and had significantlinear selection differentials S (=408 plants, t-
test, two-sided, unadjusted P<0.05) among transcripts (n=1,960 transcriptsin
thewetfieldand n=1,671transcriptsinthedry field) from genesin100-kb
regions surrounding these SNPs, compared to transcripts from genes in other
genomicregions (x% notsignificant (ns); two-sided P=0.862 for the wet field
and P=0.85for thedryfield). Supplementary Table 27 provides genome-wide
association mappingresults for total lifetime fitness in wet and dry conditions,
and for flowering success and fecundity under drought conditions.



Extended Data Table 1| Phenotypic selection gradients, G-matrices and outcomes of selection for transcript levels in wet

and dry conditions

Principal components Selection gradients G-matrix Az

Wet P PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 Direct Indirect Total

PC1 -8.47E-05 0.229 0.001 0.413 0.070 -0.013 -0.352 0.044 -0.108 -0.076 0.149 0.012| 6.26E-05 0.002 0.002
PC2 -5.00E-05 0.792 0.001 0.732 -0.013 0 0.041 -0.069 -0.043 0.017 0.016 -0.008 0  6.69E-04 0.001
PC3 4.89E-04 0.169 0.002 0.471 -0.352 0.041 0.252 0.305 0.202 9.34E-05 -0.221 0.269| 4.60E-04 -0.004 -0.004
PC4 3.86E-04 0.433 -0.004 0.197 0.044 -0.069 0.305 0.189 0.335 -0.024 -0.009 -0.010( -6.86E-04 -0.001 -0.002
PC5 9.54E-04 0.038 -0.004 0.204 -0.108 -0.043 0.202 0.335 0.086 0.010 -0.112 -0.044( -3.52E-04 -0.003 -0.004
PC6 -1.28E-04 0.814 -0.002 0.622 -0.076 0.017  9.34E-05 -0.024 0.010 0 -0.010 0.004 0 -1.50E-04 -1.50E-04
PC7 1.78E-04 0.755 0.017  1.44E-06 0.149 0.016 -0.221 -0.009 -0.112 -0.010 0.455 0.090 0.008  9.04E-04 0.009
PC8 2.29E-04 0.647 0.007 0.046 0.012 -0.008 0.269 -0.010 -0.044 0.004 0.090 0.077| 5.60E-04 0.002 0.003
Dry P PC1 PC2 PC3 PC4 PC5 PC6 PC7 Direct Indirect Total

PC1 -1.09E-04 0.779 0.001 0.820 0.253 -0.138 0.256 -0.019 0.047 0.015 -0.068 3.64E-04 0.005 0.006
PC2 -2.88E-04 0.747 -0.005 0.636 -0.138 0 0.199 -0.090 -0.041 -0.059 0.071 0 0.002 0.002
PC3 -2.79E-04 0.880 0.017 0.223 0.256 0.199 0 -0.273 0.378 -0.171 0.103 0 -0.003 -0.003
PC4 0.003 0.379 -0.006 0.722 -0.019 -0.090 -0.273 0.154 -0.007 0.035 -0.079 -0.001 -0.003 -0.004
PC5 0.002 0.555 0.004 0.816 0.047 -0.041 0.378 -0.007 0 -0.135 0.057 0 0.002 0.002
PCé 0.002 0.556 0.032 0.070 0.015 -0.059 -0.171 0.035 -0.135 0.150 -0.060 0.005 -0.003 0.001
PC7 0.001 0.691 0.002 0.897 -0.068 0.071 0.103 -0.079 0.057 -0.060 0.260 0.001 3.567E-05 0.001

The selection gradients describing nonlinear (y) and linear () selection on principal components of genome-wide transcript abundance, the matrix of additive genetic variances and covari-
ances of these principal components (G-matrix), and the outcome of selection (Az) for total lifetime fitness in wet and dry conditions. n = 408 plants, t-test, two-sided, adjusted P < 0.05.
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Extended Data Table 2 | Phenotypic selection gradients on transcript levels for flowering success, fecundity and lifetime
fitness in dry conditions

Dry Flowering Success Fecundity Total

Principal components P B Y P B B

PC1 8.18E-06 0.973 0.002 0.618( -1.17E-04 0.409 -0.001 0.811| -1.09E-04 0.779 0.001 0.820
PC2 -2.24E-04 0.693 -0.005 0.443( -6.38E-05 0.845 1.27E-04 0.971( -2.88E-04 0.747 -0.005 0.636
PC3 4.18E-05 0.971 0.008 0.352 -3.21E-04 0.646 0.009 0.088( -2.79E-04 0.880 0.017 0.223
PC4 0.004 0.062 -0.019 0.070 -0.001 0.221 0.013 0.014 0.003 0.379 -0.006 0.722
PC5 0.002 0.271 0.003 0.788( -2.67E-04 0.799 0.001 0.862 0.002 0.555 0.004 0.816
PC6 0.002 0.186 0.025 0.023 -0.001 0.371 0.007 0.301 0.002 0.556 0.032 0.070
PC7 0.002 0.316 -0.008 0.486 -0.001 0.492 0.011 0.125 0.001 0.691 0.002 0.897

The selection gradients describing nonlinear (y) and linear () selection on principal components of genome-wide transcript abundance for flowering success, fecundity and total lifetime

fitness in dry conditions. n = 408 plants, z-test for flowering success and t-test for fecundity, two-sided, unadjusted P < 0.05.
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Data collection The genomic data used were downloaded from SRA BioProjects PRIEB6180, PRINA422249, and PRINA557122. The reference genome
used by STAR was Nipponbare IRGSP 1.0 (GCF_001433935.1) including plastids. A reference annotation was generated from Ensembl's
IRGSP nuclear O. sativa genome annotation (1.0.37, ftp://ftp.ensemblgenomes.org/pub/plants/release-37/gff3/oryza_sativa) and
supplemented with the Refseq Mitochondrial and Chloroplast annotations (ftp://ftp.ncbi.nIm.nih.gov/genomes/all/GCF/001/433/935/
GCF_001433935.1_IRGSP-1.0).

Data analysis Leaf area was assessed using Imagel) v1.52 and GIMP v2.10.0. RNA-seq data were processed and analyzed using Drop-seq tools v1.12,
STAR aligner v020201, Picard tools v2.9.0, DChip v2010.01 and R v3.4.3 packages edgeR v3.14 and Ime4 v1.1. Selection analyses were run
using custom-made scripts in Python version 2.7 that are available here in Supplementary Notes 1 and 2, and on GitHub in repositories
icalic/Linear-regression-analysis and icalic/Logistic-regression-analysis. Gene-set enrichment analyses were performed using PlantGSEA
v1. Statistical analyses were performed in R v3.4.3, further using packages Ime4 v1.1 and corpcor v1.6.9. Genome analyses were
performed using bbduk 37.66, bwa-mem v0.7.16a-r1181, the GATK GenotypeGVCFs engine v3.8-0-ge9d806836, vcftools v0.1.15, jvarkit
suite v1, Beagle v4.1, plink v1.9 and GAPIT v3.
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We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Raw phenotype data are available in the Supplementary Table and Source Data files. Raw RNA sequence data that support the findings of this study have been
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deposited in the SRA under BioProject accession number PRINA588478, and are publicly available. Files with processed RNA read count data and sample metadata
are publicly available from Zenodo (https://zenodo.org/record/3533431 with DOI 10.5281/zenod0.3533431). A key to the RNA sequence data in SRA BioProject
accession number PRINA588478 can be found in Supplementary Table 4 as well as in the metadata file available from Zenodo.
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Sample size Representative studies from the literature were used to determine sample size. These studies are cited in the manuscript.

Data exclusions  In the selection analyses, individuals that were severe outliers for the relative abundance of a transcript/trait (+ 3 SD) were removed on a per-
transcript/trait basis to satisfy the assumption of normality. This was a pre-established criterion.

Replication All accessions were successfully planted and measured in biological triplicate in both field environments.

Randomization  Allocation of individual plants into experimental groups was random, and the planting order of individuals was randomized according to an
alpha lattice design.

Blinding The investigators were blinded to the genetic identity of individuals in the experiment during sampling, sample processing, and outcome
assessment.
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